
Louis B. Rall* George F. Corliss t

1. An Introduction to Automatic Differentiation

Abstract

This paper provides a gentle introduction to the field of automatic differentiation
(AD), with the goal of equipping the reader for the other papers in this book. AD
is the systematic application of the familiar rules of calculus to computer programs,
yielding programs for the propagation of numerical values of first, second, or higher
derivatives. AD can be regarded as traversing the code list (or computational graph)
in the forward mode, the reverse mode, or a combination of the two. Algorithms
for numerical optimization, differential equations, and interval analysis all could use
AD technology to compute the required derivatives. AD typically is implemented by
using either source code transformation or operator overloading. We give examples of
code for each. Finally, we outline some 'pitfalls of AD for naive users, and we present
opportunities for future research.

Keywords: Code list, 'forward mode, reverse mode, source code transformation,
operator overloading.

1 What Is Automatic Differentiation?
This paper is a general introduction to automatic differentiation (AD), also known as
computational differentiation, algorithmic differentiation, and differentiation of algorithms.
We present the basic ideas with a minimum of technicalities. AD is a process for evaluating
derivatives which depends only on an algorithmic specification of the function to be
differentiated. In actual practice, the specification of the function is all or part of a computer
program, and the derivative values are produced by the execution of the program derived
from the program for the original function, hence the term "automatic."

Algorithmic specification of the derivatives of the function to be differentiated is not
required, just specification of the function itself. Consequently, it should be made clear
from the outset what automatic differentiation is not. It is neither the process of symbolic
differentiation taught in calculus nor the divided differences of classical numerical analysis.
For example, given the function

(1) f(x, y) = (xy + sin x + 4)(3y2 + 6),

defined by a formula, symbolic differentiation produces formulas for its derivatives,

af
ax
af
ay

(y + cos X)(3y2 + 6) = 3y2 cos X + 6 cos x + 3y3 + 6y,

6y(xy + sin x + 4) + X(3y2 + 6) = 9xy2 + 6ysinx + 24y + 6x.

'Department of Mathematics, University of Wisconsin, Madison, WI (rall@rnath.wisc.edu).
tDepartment of Mathematics, Marquette University, Milwaukee, WI (georgecssmscs.mu.edu}. Supported

in part by National Science Foundation Grant No. DMS-9413525.

1

2 RALL AND CORLISS

In principle, evaluation of these formulas gives exact values of the derivatives of f(x, :;
However, an actual computation is subject to unavoidable roundoff error resulting from t::'o
individual floating-point operations.

As in the case with symbolic differentiation, the values for derivatives obtained by A=
are exact (to roundoff). Although great advances have been made in symbolic differentiatic:
of formulas, automatic differentiation generally requires less memory and CPU time az :
also applies to functions defined by computer programs or subroutines for which r.:
formula may be available. AD also works well in conjunction with symbolic processi- ,

• capabilities [Monagan1996a). AD is the method of choice in many applications requiri~_i
gradient vectors or Hessian matrices of functions of a substantial number of variables. .:
in cases in which many (even hundreds or thousands of) terms of Taylor series expansio-.
of solutions of systems of ordinary differential equations are needed.

Divided differences, on the other hand, produce approximations to values of derivativ-.
based on the use of difference quotients involving only function evaluations, for example.

(2) of "'=i f(x + 6.x, y) - f(x - 6.x, y) = of + O(6.x3),

ox 26.x ox

where the term 0 (6.x3) denotes the (unknown) truncation error of this central differen :0
approximation to fx(x, y). The rate at which the truncation error approaches zero ce;
be increased at the cost of more function evaluations [Milne1949a), but divided differenc-.
are inherently inexact except for polynomials of sufficiently low degree in the variable .:
interest. Reduction of the truncation error in a finite-difference approximation such ~,
(2) by reducing the size of 6.x can be thwarted by roundoff error. Significant digits c.>
cancelled in the numerator, and the resulting error is magnified by division by a srna.,
divisor. In contract, the values for derivatives obtained by AD are exact and are ofr- ;
much less expensive to compute.

2 How Does AD Work?
AD works whenever the chain rule holds. The techniques of AD are based on the systema~:'
application of the chain rule, but go far beyond it, as the papers in this book demonstra>

Much of the ordinary introduction to differential calculus focuses on training studer.r:
to produce formulas for derivatives offunctions also defined by formulas. Consequently, t::'o
idea of evaluating derivatives exactly, without formulas for them, is novel to many. In f:_'
section, an informal introduction to the methodology will be given for those unfamiliar w..:
~he concept; technicalities are postponed to the following sections. The theoretical exactns..
of automatic differentiation stems from the fact that it uses the same rules of differentiatic:
25 learned in elementary calculus, but these rules are applied to an algorithmic specificatic:
of the function rather than to a formula. It is precisely this feature that makes automa.'.
,:'.ifferentiation suitable for machine computation (i.e., "automatic"). To illustrate this, >
.~~back up a little and consider how to evaluate (rather than differentiate) the functic ,
:'.dined by equation (1). One starts with the values of x and y, builds up each factor, a;:
.r.en multiplies them to obtain the final result. The steps involved could be written:

tl = x, t6 = t5 + 4,
t2 = y, t7 = t~,, t3 t1t2, ts 3t7,.-,

t4 = sin t1, t9 = ts + 6,
t5 = t3 + t«, tlO = t6t9·

