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1 Introduction

Bristol Gödel attempts to be a reasonably faithful implementation of the Gödel language
as described in The Gödel Programming Language by P.M. Hill and J.W. Lloyd, MIT
Press 1994. However, due to the limitations of the underlying execution model, not all the
features of the Gödel language are supported. This document explains the implementation
of the Gödel language. It also serves as a supplement to The Gödel Programming Language

concentrating on the practical use of the Gödel language.

The Bristol Gödel system is implemented in SICStus Prolog, and SICStus Prolog is
also the target language of the Gödel compiler. There were two reasons for this decision.
Firstly, Prolog is widely considered suitable for fast prototyping, and our own experience
confirms this. It took about 1 man year to ship the first version of Bristol Gödel. Given that
the Gödel language was constantly changing and evolving, this development time is rather
short. Owing to recent improvements in Prolog implementation, the prototype system runs
at a reasonable speed. With some optional checking disabled, the Gödel parser compiles
at about 120 lines per sec. on a SPARC 2. Secondly, the semantic gap between Gödel and
Prolog is much smaller than that between Gödel and C or WAM code. By compiling Gödel
programs to Prolog, the compilation process is greatly simplified. However, it should be
pointed out that Gödeĺs commit pruning operator could not be implemented efficiently in
its full generality without modifying the underlying Prolog engine, so the implementation
has some gaps, but these won’t affect most users of the language.

Without any delay declarations, negations or IF-THEN-ELSE constructs, Gödel pro-
grams run at the same speed as equivalent SICStus programs (about 600K LIPS on a
SPARC 2). A carefully written Gödel program (with all features) should run at about half
of the speed of SICStus.

Please send bug reports to goedel@compsci.bristol.ac.uk.

All suggestions for improvement are welcome.
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2 Using the Gödel system

To use the Gödel system, you need to run the executable file called ‘goedel’. (Instructions
for installing the Gödel system can be found in the README file in the top level directory
of this release.) If you do not have SICStus Prolog, your Gödel system will be based on
the SICStus runtime system. There are a few differences between this Runtime Gödel and
Gödel based on full SICStus Prolog, and these will be indicated where appropriate. Having
entered the Gödel system, you will see a prompt ‘[] <-’ at which you may type commands
or Gödel queries. Commands always begin with a semi-colon (;) character to distinguish
them from queries. All commands and Gödel queries end with ‘.’ followed by a carriage
return (CR).

The commands available in the Gödel system are presented below. Some commands
take one or two parameters. The parameters are either a BigName (a sequence of alphanu-
meric characters starting with a capital letter, e.g. Module) or a String (any sequence of
characters enclosed in double quotes, e.g. "File"). The syntax of each command is given
in brackets after its name. The commands are divided into four groups: basic commands
and commands for compiling and loading Gödel programs; utilities for performing other
operations on Gödel files; debugging utilities, and an interface to Unix.

2.1 Basic system commands

Help (;h.) Gives rudimentary help information and lists the abbreviations that may be
used.

Quit (;quit.) This command returns you to the Unix shell.

Compile (;c Module.) This compiles the given module. In compiling a module, the
Gödel system looks for files whose name consists of the module name and the ex-
tension ‘.loc’ or ‘.exp’. Error and warning messages are printed out if there are any
problems with syntax. Programs that generate only warnings may still be correct,
but we strongly advise you never to ignore warning messages.

There may be several error messages for a single error, due to Gödeĺs overloading
mechanism. Not all the error messages are relevant, but it’s advisable to read through
them all.

If there is no error in the program, three files will be generated. The names of the
files consist of the module name and extensions ‘.lng’, ‘.pl’ and ‘.ql’. (If you are using
Runtime Gödel, only the ‘.lng’ and ‘.pl’ files are generated. In this case, the ‘.pl’
file is not compatible with that generated by a normal Gödel system.) The ‘.lng’
file contains the language of the module. The ‘.pl’ file is the compiled Gödel code in
Prolog; and the ‘.ql’ file is the ‘.pl’ file compiled by SICStus.

If the given module imports some other modules, and those modules have already
been compiled, the ‘;c’ command will load their ‘.lng’ files instead of parsing those
modules.
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Make (;m Module.) This compiles the given module, and also compiles all the user mod-
ules it depends upon, whether or not these have already been compiled.

Load (;l Module.) This loads the compiled module and the user modules it depends
upon from their ‘.lng’ and ‘.ql’ files (‘.pl’ files in the case of Runtime Gödel). Absence
of any of these files causes the load command to abort. After loading a Gödel
program, the system prompt changes to ‘[Module] <-’, where Module is the name
of the main module in the program.

Make and Load (;ml Module.) This makes and loads the module into the system. Any
error causes the ;ml command to abort.

Check Syntax (;cs Module.) This command checks the syntax of the given module but
does not create any files. It is useful to determine the syntactical correctness of an
incomplete program.

Save States (;save File Goal.) This instructs Gödel to save the current state (the
loaded Gödel program) into the executable file File. When File is run, Gödel will
start the execution of Goal. This command is not available in the Runtime Gödel.

Switch On Checking (;checking.) This switches on various checks. At the moment,
three kinds of check are supported, and they are all enabled by default when the
Gödelsystem starts up. The first is the singleton variable check which finds any
singleton variables in a clause. Note that the effects of disjunctions and IF-THEN-
ELSE constructs are not considered in the check. The second is the quantified variable
check. This identifies quantified variables which have not been used in quantified
subformula. The third is the floundering check. It is a primitive (but effective)
way to single out variables which will definitely cause floundering under the current
computation model.

Switch Off Checking (;nochecking.) This switches off the checks turned on by the
;checking command. Using this command improves compilation speed, but it is
not recommended until the program is known to have passed all the checks in a
previous compilation.

2.2 Gödel utilities

Program Compile (;pc Module.) This creates the ground representation of the spec-
ified program whose main module is Module in a file whose name consists of the
main module name and ‘.prm’ extension. If there is any syntax error in the specified
module and its dependent user modules, the ground representation of the module is
not created.

Program Decompile (;pd "File".) This takes the ground representation of a program
from the file whose name consists of the module name and ‘.prm’ extension, and
generates source files for all the component user modules of this program. Where

5



‘.exp’ and ‘.loc’ files already exist for one of these modules, they will be renamed
with ‘.exp.old’ and ‘.loc.old’ extensions respectively, so that the existing source is not
immediately destroyed.

Script Compile (;sc Script.) This compiles a generated script in the file whose name
consists of the script name and ‘.scr’ extension and produces ‘.lng’, ‘.pl’ and ‘.ql’ files
so as to be loaded for execution. If you are using Runtime Gödel, the ‘.ql’ file is not
created.

Flock Compile (;fc "File" "Flock".) This takes a flock and returns a Gödel internal
representation of the flock in a file whose name consists of the flock name and ‘.flk’
extension. If there is an existing flock of the same name, the existing flock will be
overwritten. If there is any syntax error in the file of units, the ‘;fc’ commands
aborts.

Flock Decompile (;fd "Flock" "File".) This takes a Gödel flock and returns a file of
units. The flock should be in a file with the name consisting of the flock name and
‘.flk’ extension. If there is an existing file of the same name, the existing file will be
overwritten.

Canonicalise Prolog (;cp "File1" "File2".) This utility converts Prolog clauses or
terms in File1 into their canonical form in File2. Variable names are not preserved.

Decanonicalise Prolog (;dp "File1" "File2".) This converts Prolog clauses or terms
in canonical form in File1 into standard form in File2.

2.3 Debugging facilities

Debug Compile (;dc Module.) This has the same effect as the ‘;compile’ command
except that it also incorporates debugging information into the compiled code for the
given module. Debug compiled modules run much more slowly.

Trace (;trace.) Switches on the tracer.

Notrace (;notrace.) Switches off the tracer.

Spy (;spy Predicate.) Sets spy points at all predicates or propositions with declared
name Predicate, regardless of their arity and the module in which they are declared.

Nospy (;nospy Predicate.) Removes spy points at all predicates or propositions with
declared name Predicate, regardless of their arity and the module in which they are
declared.

Nospyall (;nospyall.) Removes all spy points.

Type (;t Symbol.) Displays the declarations of all the constants, functions, propositions
and predicates in the goal language of the loaded program that have the declared
name Symbol.
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2.4 Interface to shell

cd (;cd "Directory".) Changes to the specified directory. The ‘Directory’ argument
must be a string. If it is omitted, ‘;cd’ changes to the user’s home directory.

ls (;ls "Directory".) Lists the content of a directory. The ‘Directory’ argument must
be a string. If it is omitted, ‘;ls’ lists the current directory.

more (;more "File".) Invokes the Unix ‘more’ command for the specified file.

Shell (;shell "Command".) Executes a shell command of the underlying operating sys-
tem. If ‘Command’ is omitted, this enters a shell.

pwd (;pwd.) Displays the current directory.

2.5 Executing queries

A Gödel query should be a goal in the goal language of the program whose main module is
the current module. A full stop ‘.’ should follow every query. The Gödel system attempts
to solve the query and return answer bindings for the free variables appearing in it. If the
query finitely fails, ‘No’ is printed. If it can be solved with the empty answer substitution,
‘Yes’ is printed. Otherwise, the answer substitution appears in the form:

x = Term,

for each free variable in the query. The system then prompts with a ‘?’. Typing in ‘;’
after the question mark causes the system to search for another solution. A carriage return
(CR) returns you to the main prompt.

An example session of using the Gödel system follows.

% goedel

Goedel 1.3

Type ;h. for help.

[] <- ;l Lists.

[Lists] <- Append(x, y, [1, 3]).

x = [],

y = [1,3] ? ;

x = [1],

y = [3] ? ;

x = [1,3],
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y = [] ? ;

No

[Lists] <- ;l Integers.

[Integers] <- x^2 + y^2 = z^2 & 0<x<50 & 0<y<50 & 0<z.

x = 3,

y = 4,

z = 5 ? ;

x = 4,

y = 3,

z = 5 ? ;

x = 5,

y = 12,

z = 13 ?

Yes

[Integers] <- ;ml EightQueens. % the EightQueens program

% can be found in the Goedel

% release package under

% directory /programs/demo/

Reading file "EightQueens.loc" ...

Parsing module "EightQueens" ...

Compiling module "EightQueens" ...

Module "EightQueens" compiled.

Loading module "EightQueens" ...

[EightQueens] <- Queen(x).

x = [1,5,8,6,3,7,2,4] ? ;

x = [1,6,8,3,7,4,2,5] ? ;

x = [1,7,4,6,8,2,5,3] ?

Yes

[EightQueens] <- ;q.

%
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3 Use of the Gödel tracer

There are two modes of tracing in the Gödel system, namely, trace and spy. Trace starts
tracing from the query, while spy only triggers the tracing at specified predicates. Trace and
spy work only with debug-compiled modules (seeDebug Compile in the previous section).
It is recommanded that tracing is done on a few particular modules which possibly contain
bugs. Only these modules are debug compiled to avoid irrelevant tracing information.

When the tracer is invoked, execution of the call, exit, fail and redo ports of each
debug-compiled procedure will be displayed. Each call has an unique index and each
exit, fail and redo has an index corresponding to their original call. At each entry,
you are prompted with ? at which the following commands can be used.

a - abort: abort current query.

c - continue: continue execution without trace info.

f - free: let the tracer run free and print out all the trace info.

h - help: print this message.

l - leap: leap to the next spy point.

n - next: next goal, the same as a carriage return.

r - redo: reenter the failed goal, valid only in "fail" entries.

s - skip: skip the trace info for executing the current goal,

valid only in "call" entries.

1-9: set term display depth in the tracer.

Suspended and awakened goals are also printed out under entries suspend and awaken,
respectively. In a similar way to call, each suspend also has an unique index. Each
awaken has an index corresponding to its suspend.

In this release, the tracer does not mask off terms defined in system modules as abstract
data types. In a future release, a more sophisticated debugging tool will provide facilities
for properly displaying terms in an abstract data type.

The Gödel tracer displays variables in the format _N. Variables in a suspended goal are
renamed when the goal is awoken. Module prefixes are attached to the predicate with a :,
e.g. Lists:Append([1,2], [3,4], _12345). Syntactic sugars are sometimes displayed
in the sugared form, e.g. lists and sets, and sometimes in the original form, e.g. the
Interval/3 function in the Integers module. Constraints are replaced by a variable and
cannot be seen in the trace. This can be seen in the following example.

[Integers] <- ;trace.

Tracing on

[Integers] <- x^2 + y^2 = z^2 & 1 < x < 9 & 1 < y < 9.

0 call: _34205=_33909 ?

0 exit: _34710=_34710 ?
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1 call: Integers:Interval(2,_34104,8) ?

1 exit: Integers:Interval(2,2,8) ?

2 call: Integers:Interval(2,_34008,8) ?

2 fail: Integers:Interval(2,_34008,8) ?

1 redo: Integers:Interval(2,2,8) ?

1 exit: Integers:Interval(2,3,8) ?

3 call: Integers:Interval(2,_34008,8) ?

3 exit: Integers:Interval(2,4,8) ?

x = 3,

y = 4,

z = 5 ?

Users of the Gödel tracer need to be aware that Gödel programs are converted into
normal form using the Lloyd-Topor transformations (see Section 4.1 and [Lloyd 87] p.
113) and it is the normal forms which are traced.

Commits are invisible in the Gödel tracer. Furthermore, commits are ‘switched off’
when solving a negative goal (to be elaborated in the next section). The tracer does not
give any indication about commits being switched off.

The redo command in the Gödel tracer can only be used on failed goals, due to imple-
mentation difficulties. Most predicates are intended to succeed, so the unexpected failure
of a goal is a common indication of a programming error. When this happens, the redo

command can be used to investigate the error.

The Gödel tracer differs from the Prolog tracer in that it does not have ‘break’. It is
probably not necessary to have ‘break’ in the Gödel system, because one cannot modify
the running program from the break level.
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4 Computational model

The accompanying implementation of the Gödel language maps Gödel programs into Pro-
log. This has allowed us to build prototypes of the language quickly by using existing
logic programming techniques. However, the computational model of the Gödel system is
limited by the existing implementation of Prolog.

This implementation of the Gödel system uses a variant of SLDNF-resolution as its
procedural semantics. In this section, we shall try to explain this computational model.

4.1 Lloyd-Topor transformation

Let a program statement be Head <- Body, and a goal be <- Goal. Gödel allows arbitrary
first-order formulas in Body and Goal. In order to execute Gödel programs on an SLDNF-
resolution based system, Gödel programs have to be transformed using the Lloyd-Topor
transformation [Lloyd 87, p113]. The standard Lloyd-Topor transformation can introduce
duplicated computation by creating new clauses. For instance, when

A← W1 ∧ . . . ∧Wi−1 ∧ (V ∨W ) ∧Wi+1 ∧ . . . ∧Wm

is replaced by A← W1 ∧ . . . ∧Wi−1 ∧ V ∧Wi+1 ∧ . . . ∧Wm

and A← W1 ∧ . . . ∧Wi−1 ∧W ∧Wi+1 ∧ . . . ∧Wm

the formula W1∧ . . .∧Wi−1 might have to be computed twice in the transformed program.
Because W1 \/ W2 and ~SOME [x1, ..., xn] W are handled by the underlying system, we
can skip steps in the Lloyd-Topor transformation which create new clauses. The result is a
transformation syntactically different from that in [Lloyd 87], but semantically the same.
The important difference is that no new clauses are generated in the transformation.

1. Replace A← W1 ∧ . . . ∧Wi−1 ∧ (V ← W ) ∧Wi+1 ∧ . . . ∧Wm

by A← W1 ∧ . . . ∧Wi−1 ∧ (V ∨ ¬W ) ∧Wi+1 ∧ . . . ∧Wm

2. Replace A← W1 ∧ . . . ∧Wi−1 ∧ (V ↔ W ) ∧Wi+1 ∧ . . . ∧Wm

by A← W1 ∧ . . . ∧Wi−1 ∧ (V → W ) ∧ (V ← W ) ∧Wi+1 ∧ . . . ∧Wm

3. Replace A← W1 ∧ . . . ∧Wi−1 ∧ ∃x1 . . . ∃xnW ∧ . . . ∧Wm

by A← W1 ∧ . . . ∧Wi−1 ∧W ∧Wi+1 ∧ . . . ∧Wm

4. Replace A← W1 ∧ . . . ∧Wi−1 ∧ ∀x1 . . . ∀xnW ∧ . . . ∧Wm

by A← W1 ∧ . . . ∧Wi−1 ∧ ¬∃x1 . . . ∃xn¬W ∧Wi+1 ∧ . . . ∧Wm

5. Replace A← W1 ∧ . . . ∧Wi−1 ∧ ¬(V ∧W ) ∧Wi+1 ∧ . . . ∧Wm

by A← W1 ∧ . . . ∧Wi−1 ∧ (¬V ∨ ¬W ) ∧Wi+1 ∧ . . . ∧Wm
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6. Replace A← W1 ∧ . . . ∧Wi−1 ∧ ¬(V ∨W ) ∧Wi+1 ∧ . . . ∧Wm

by A← W1 ∧ . . . ∧Wi−1 ∧ ¬V ∧ ¬W ∧Wi+1 ∧ . . . ∧Wm

7. Replace A← W1 ∧ . . . ∧Wi−1 ∧ ¬(V ← W ) ∧Wi+1 ∧ . . . ∧Wm

by A← W1 ∧ . . . ∧Wi−1 ∧ ¬V ∧W ∧Wi+1 ∧ . . . ∧Wm

8. Replace A← W1 ∧ . . . ∧Wi−1 ∧ ¬¬W ∧Wi+1 ∧ . . . ∧Wm

by A← W1 ∧ . . . ∧Wi−1 ∧W ∧Wi+1 ∧ . . . ∧Wm

9. Replace A← W1 ∧ . . . ∧Wi−1 ∧ ¬∀x1 . . . ∀xnW ∧ . . . ∧Wm

by A← W1 ∧ . . . ∧Wi−1 ∧ ∃x1 . . . ∃xn¬W ∧ . . . ∧Wm

4.2 Safe negation

The safeness condition is imposed in the Gödel system. In other words, negated subfor-
mulas of a goal are delayed until they contain no free variables. Furthermore, to ensure
the soundness of the negation as failure rule, commits are disabled inside the execution of
a negated goal.

These two restrictions are also applied to the execution of the condition in IF-THEN-
ELSE constructs. This is because IF Cond THEN ThenPart ELSE ElsePart is semanti-
cally equivalent to Cond & ThenPart \/ ~Cond & ElsePart.

4.3 Computation rule

The computation rule in the Gödel system, called the faithful computation rule, generally
selects the leftmost unsuspended goal, subject to the following caveats:

• constraints may be solved in any order that the system finds convenient;

• in some circumstances the order in which suspended goals are woken is undefined
(due to a limitation of SICStus Prolog).

If all the goals are suspended, the computation flounders.

Once the execution enters the scope of a commit, it must solve the scope entirely
before pruning can occur. If no literal in the scope can be selected, so that execution must
leave the scope of the commit before solving it completely, then that commit becomes
permanently disabled, that is it will never prune even if its scope is eventually solved.

The order in which clauses are selected in the execution of a Gödel program is not
defined.
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4.4 Constraint solving

Implementation of constraint solving in the modules Integers, Rationals, Strings and
Sets is primitive. The basic idea in the implementation is to use the coroutining mechanism
to suspend constraints until they become solvable. A constraint is solvable when there are
sufficient bindings to produce a finite number of solutions. Sophisticated constraint solving
methods are not supported yet. The following two goals demonstrate solvable constraints.

<- x Mod 3 = 1. % suspends and eventually flounders

<- x^2 = 4. % gives two answers.

It’s hard to define what is currently available. Generally, this release supports:

1. Evaluating expressions with data structures defined in system modules Integers,
Rationals, Strings and Sets. For example, the following procedures can be exe-
cuted.

PREDICATE P : Integer.

P((2*3+4) Div 6).

PREDICATE Sum : Set(Integer) * Integer.

Sum({}, 0).

Sum(set, sub_total + x) <-

x In set &

Sum(set\{x}, sub_total).

PREDICATE AddPostfix : String * String.

AddPostfix(file_name, file_name ++ ".prm").

2. Generating integers in an interval. E.g. 1 < x =< 5.

3. Solving linear equations which are in triangular form. For example,

<- 2*x+1 = y+2 & 3*y-2 = 1.

<- x/2 + y/3 = 5/6 & y/2 + 1/3 = 5/6.

4. Exhaustive search with coroutining.

<- x^2 + y^2 = z^2 & 1<x<50 & 1<y<50 & 0<z.
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4.5 Set unification

Full set unification is not implemented, because it would be too inefficient to support it at
the Prolog level. Unification can be performed for ground sets, and a variable and a set;
attempts to do more complex set unifications will flounder. For example,

[Sets] <- {1,2,3} = {3,2,1,2}.

Yes

[Sets] <- {1,2,3} = {3,2,1,4}.

No

[Sets] <- x = {3,2,1,2,3}.

x = {1,2,3} ?

Yes

Set operations which contain non-ground sets will be delayed until the non-ground sets
become ground. For example,

[Sets] <- x In ({y} + {z}) & y=1 & z=2.

x = 1,

y = 1,

z = 2 ? ;

x = 2,

y = 1,

z = 2 ? ;

No

[Sets] <- x In {y} + {z} & y=1.

Floundered. Unsolved goals are:

Goal: {v_1}=v_2

Delayed on: v_1

Goal: v_3={1}+v_2

Delayed on: v_2

Goal: Sets:(v_4 In v_3)

Delayed on: v_3
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5 Interface to Prolog and C

In this section we explain how to call Prolog from Goedel. By using the C interface in
SICStus Prolog, and the Gödel to Prolog interface, you can access C code from your Gödel
programs. Please refer to SICStus Prolog User’s Manual [Carlsson&Widén 92] for the
details of the C interface.

Almost every symbol, and every user-declared symbol, in a Gödel program is given its
flat name when translated into Prolog, to ensure its uniqueness despite any overloading.
Flat names look like this:

<Module>.<Symbol>.<Category>.<Arity>

where <Module> is the name of the module in which the symbol is declared, <Symbol> is
its declared name, <Category> is one of the letters (B, S, C, F, O, P) depending on whether
the symbol is a base, constructor, constant, function, proposition or predicate respectively,
and <Arity> is its arity (a positive integer, or 0 for Bases, Constants and Propositions).
So a predicate + declared in a module called Utilities will become ’Utilities.+.P2’

when compiled. Notice the quotes that are needed for Prolog to accept this as a predicate
symbol.

The only important exceptions to this translation rule are integers and lists, which are
both translated directly into their Prolog equivalents, so that we can take advantage of
Prolog’s support for these data types. There are several other Gödel system data types
that are also handled specially, such as strings, sets and flocks, but it is not advisable or
necessary to touch these or any other system data type in Prolog code; the system modules
should provide a sufficient kit of operations for these types.

In order to call Prolog from Gödel, you need first to declare a predicate in a Gödel
module, and then provide an definition in Prolog for the flat name of this predicate, taking
care also to use the flat names for any constant or function symbols that appear in terms
passed to or from Gödel. There is, however, a slight complication caused by negation.
Inside negation, Gödel commit is disabled. Since we simulate commit with Prolog cut,
we need a second copy of the compiled program without cuts for use with negative calls.
This copy has a ~ character prepended to the flat name of all predicates: ’ Utilities.+.P2’.
You must provide a definition for this negative version of any predicate you implement in
Prolog, otherwise any negated calls (such as in the condition of an IF-THEN-ELSE) will
behave incorrectly. Normally the negative version can simply call the positive one. The
Prolog code will then be invoked whenever the Gödel predicate is called.

Take care with delay declarations. Calls to a Gödel predicate that has delay declarations
but no definition (because the definition is in Prolog) will not delay as expected. If you
need delays, it is simplest to give all Gödel predicates with delays a definition in Gödel;
such a definition might simply be a single statement that calls directly another predicate
which is not delayed and implemented in Prolog.
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Every Gödel module is compiled into a SICStus module with the same name. The
Gödel compiler will expect to find the code for predicate declared in a particular module
in that same module, and SICStus modules must occupy single files. Consequently, Prolog
code defining a Gödel predicate must be incorporated in the file containing the Prolog code
compiled from the Gödel module that declares it. The Gödel system will do this for you
automatically if you put your prolog code in a file called <Module>.sup where <Module>

is the name of the Gödel module.

For example, if you have a Gödel module M consisting of files M.exp, M.loc and M.sup,
when it is compiled M.ql will include the Prolog code in M.sup. Note that you may get
into trouble if you attempt meta-programming (such as partial evaluation) with an object
program containing user modules with Prolog additions.

The following rather contrived example should make the mechanism clear. It shows
naive reverse partially implemented in Prolog, but using the append predicate from the
Lists system module.

------------------------------

MODULE Naive.

IMPORT Lists.

PREDICATE Rev : List(a) * List(a). % Reverse a list

DELAY Rev(x, _) UNTIL GROUND(x).

Rev(xs, ys) <- Rev1(xs, ys).

PREDICATE Rev1 : List(a) * List(a). % Implemented in Prolog

------------------------------

% Naive.sup, Prolog code for Rev1

’Naive.Rev1.P2’([], []).

’Naive.Rev1.P2’([X|Xs], Ys) :-

’Naive.Rev1.P2’(Xs, Zs),

’Lists’:’Lists.Append.P3’(Zs, [X], Ys).

’~Naive.Rev1.P2’(Xs, Ys) :-

’Naive.Rev1.P2’(Xs, Ys).

------------------------------
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6 Some hints for good programming in Gödel

The following offers some general hints on good programming style and how to use the
Gödel system effectively.

• Gödel programs are very close to logic specifications. Usually the program itself
serves as the specification. It is highly recommended that the naming of variables
and symbols be done carefully in the sense that the name should reflect the intended
interpretation of the object. Sometimes, it is difficult to give an object a good name.
But remember that if you cannot find a name for a symbol, the idea behind it may
be wrong.

• Singleton variables are most often produced by misspelling and unfinished clauses.
So do not ignore singleton variable warnings and unused quantified variable warnings.

• Be careful of the limitations of safe negation, and note that all pruning is disabled
within the condition of an IF-THEN-ELSE as well as within explicitly negated calls.
It is better to write procedures to be determinate wherever possible without using
commit to enforce determinacy. Experience suggests that it is a bad idea to use
the failure of a procedure to return information, even the information that an error
occurred, because testing for failure may compromise the efficiency of the procedure.
Return error indications in arguments instead.

Here are answers to some common questions:

• Why does my program flounder?

It is our experience that if the logic of a program is correct the program should
run. When a goal flounders, it is useful to look at the quantifiers, negations, IF-
THEN-ELSE constructs and intensional sets. The floundering message may give you
some clue which part of program to look at. Particularly, local variables in the con-
dition part of IF-THEN-ELSE should all be quantified. Beware also of attempts to
unify nonground sets.

• How can I make my Gödel program run faster?

The underlying Prolog system supports first argument indexing and tail recursion
optimisation. Because the mapping from Gödel to Prolog is direct, the Gödel system
does too. When properly used, first argument indexing and tail recursion optimisa-
tion can improve the speed by a factor of anything from 2 to 100.

• How can I write more efficient constraint solving programs?

The Bristol Gödel system supports only coroutining with exhaustive search. So-
phisticated constraint solving methods have not yet been implemented. It would be
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hard to write very efficient constraint solving programs in Gödel. However, there are
a few rule of thumbs to help to improve the efficiency.

– Break down large constraints into smaller ones. This splits up the search
space and programs may benefit from early failure. In the case of solving the
SEND + MORE = MONEY puzzle, the Bristol Gödel takes a very long time to solve
the following:

[Sets] <- 1000*s + 100*e + 10*n + d

+ 1000*m + 100*o + 10*r + e

= 10000*m + 1000*o + 100*n + 10*e + y &

1=<m=<9 & 0=<d=<9 & 0=<e=<9 &

0=<r=<9 & 0=<n=<9 & 1=<s=<9 &

0=<o=<9 & 0=<y=<9 &

Size({s,e,n,d,m,o,r,y}, 8). % the digits have

% to be different.

But it can solve the following in a few seconds:

[Sets] <- y = (d+e) Mod 10 &

sum1 = n + r + (d+e) Div 10 &

e = sum1 Mod 10 &

sum2 = e + o + sum1 Div 10 &

n = sum2 Mod 10 &

sum3 = s + m + sum2 Div 10 &

o = sum3 Mod 10 &

m = sum3 Div 10 &

1=<m=<9 & 0=<d=<9 & 0=<e=<9 &

0=<r=<9 & 0=<n=<9 & 1=<s=<9 &

0=<o=<9 & 0=<y=<9 &

Size({s,e,n,d,m,o,r,y}, 8).

– If there are producer and consumer goals (and they have proper delay declara-
tions), put the consumers before the producers. This invokes the coroutining
mechanism which in many cases leads to early failures so as to reduce search
space. In the program EightQueen, which can be found in the book The Gödel

Programming Language and the Gödel release package under directory /pro-
grams/demo,

<- Safe(x) & Permutation([1,2,3,4,5,6,7,8], x).

is about 19 times faster than

<- Permutation([1,2,3,4,5,6,7,8], x) & Safe(x).

in finding the first answer.

– Arrange goals with a small search space before those with a large search space.

• What are Gödel’s counterparts to Prolog var, nonvar, =.., assert and retract?
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Prolog’s var, nonvar, assert and retract are not supported in Gödel because they
are not declarative. Univ (=..) would break Gödel’s type system. However, the
meta-logical use of var and nonvar is supported by Gödel meta programming facili-
ties, i.e. Variable/1 and NonVarTerm/1 in the Syntax module.

It is a common practice among Prolog programmers to write multi-moded predicates
(i.e. predicates that can run “backwards”) by using var to select between several
(hopefully equivalent) logics according to the mode of the call. Because Gödel does
not provide var, it is not possible to use this trick to have one entry point for sev-
eral procedures, and only in simple cases can efficient multi-moded procedures be
constructed. Where a relation is required to be computed in different modes, the
recommended technique is to implement a distinct predicate for each mode, with
a name suited to its mode. The modes can be enforced by delay declarations. Of
course, this means that the mode must be known at the point of call, but in practical
programs this is rarely a problem.

The meta-logical use of Prolog’s assert and retract is provided by Gödel’s meta-
programming facilities, i.e. InsertStatement/4 and DeleteStatement/4 respec-
tively in the Programs module. There is no equivalent to assert and retract for im-
plementing global variables in Gödel; instead add an extra argument to the relevant
predicates in order to pass around state information.
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7 Facilities absent from this release

Several facilities of the Gödel language are not implemented in this release.

1. The occur check is not implemented.

2. Full commit is not supported. Only bar commit and one solution commit are allowed.
Co-routining across the bar commit and one solution commit causes the commit to
be switched off.

3. Implementation of constraint solving is primitive as has been discussed in Section
4.4.

4. The Gödel system utilities: script-view, theory-compile and theory-decompile

are not available.

5. The following system modules are not available: Floats, Numbers, NumbersIO,
Theories, and TheoriesIO.
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8 Known bugs and limitations

There are a few known bugs or limitations which we have not had time to fix or cannot be
fixed in this implementation. These are as follows:

1. It is known that parsing Gödel programs is an NP-complete problem, owing to the
overloading of symbols causing difficulty in type checking [Henderson 94]. The Bristol
Gödel parser works efficiently for most application programs, but its approach is
simple and it is not hard to find examples that break it. Generally, the parser
is slow at sorting out heavily ambiguous expressions; for example, it takes a few
minutes for the parser to parse x = 1+2+3+4+5+6+7+8+9 in a module which imports
Integers, Rationals and Sets modules, because + has been declared in all these
three modules. One clumsy solution to the problem is to break up the expression
into different clauses. Future releases may improve on examples of this sort, but the
general problem is here to stay.

2. If the Gödel system is compiled using SICStus 2.1 #8 (or earlier versions), a Gödel
string is limited to 512 characters. Gödel systems compiled with SICStus 2.1 #9 (or
later versions) will not have this problem.

3. Arithmetic functions and repeated variables in the head of a DELAY declaration
may cause DELAY declarations to behave incorrectly in some rare cases.

4. In both the Integers and Rationals modules, if you use the power function back-
wards to compute the root of a number, when the answer is greater than 10^14, it
is usually wrong. For instance,

[Integers] <- x^2 = 10^28.

x = 100000000000000 ?

Yes

[Integers] <- x^2 = 10^30.

No.

This is because there is no general algorithm for this class of problems and the
inaccurate logarithm function has to be used.

5. No opaque terms are generated by the meta modules. This has little practical con-
sequence, but means that it is sometimes possible to access the internal structure of
terms that should be hidden inside closed system modules. Programs that rely on
this will cease to work once opaque terms are implemented correctly.

6. The Succeed and Compute predicates in Programs can go wrong in certain very
obscure circumstances where the object program itself calls Succeed or Compute on
a different object program with the same name.
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7. If you use SICStus Prolog 2.1 #6 (or earlier) to compile the Gödel system, you may
be affected by a SICStus bug which causes a flounder message to be printed out even
when your program has terminated normally. This bug was fixed in SICStus 2.1 #7
(or later versions).
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