Representing Godel Object Programs in Godel”

A.F. Bowers

November 1992 CSTR-92-31

Department of Computer Science
University of Bristol
University Walk
Bristol BS8 1TR
UK

email: Antony.Bowers@bristol.ac.uk

*Work supported by ESPRIT Basic Research Action COMPULOG (3012)



Abstract

Meta-programs are an important class of programs. When meta-programming is
done in logic the object program must be represented in the meta-program. This
can be done in two ways: the non-ground and ground representations. The non-
ground representation severely limits the meta-program. The ground representation
is more powerful, but rarely used because it is thought to be complex, laborious
and to have a high computational overhead. Prolog programs therefore use the non-
ground representation and supplement it with non-logical features. Godel is a logic
programming language that aims to have similar expressive power to Prolog but with
greatly improved declarative semantics. Godel has types and a module system, and
supports declarative meta-programming in the ground representation. It is argued
that providing the representation as an abstract data type answers the accusation of
inconvenience. The representation of Godel programs as ground terms is investigated
and shown to be practical. The prospect of reducing the computational overhead by
partial evaluation exists.



All that I have to say is to tell you that the lanthorn is the moon; I, the
Man i’ th” Moon; this thorn-bush, my thorn-bush; and this dog, my dog.
—William Shakespeare, “A Midsummer Night’s Dream” Act 5 Scene L.

1 Introduction

Computer programming is difficult. Anyone who reads the computing press will know that
an alarming number of software development projects fail, simply because the programs
cannot be made to work with the available resources. The precise reasons for these failures
may be various, but one is surely chief among them: unmastered complexity.

By programming in logic we can go a long way towards mastering complexity. A pro-
grammer using a logic programming language is likely to be able to handle a more intricate
problem before being overwhelmed than a programmer using a procedural language. This
is because the logic language is compact, high-level and expressive. Since first-order logic
developed out of attempts to mechanise certain aspects of human reasoning, it is close to
the way we naturally express ideas about the world. It has a simple, clean semantics that
is easy to understand. Add types and modules to the logic, and the advantage is greater
still.

Another way to handle complexity is to seek help from automation. Programs written in
a language with simple declarative semantics can more easily be synthesised, transformed,
analysed and debugged by other programs, and the soundness of these processes can be
verified. For these reasons, we have a chance of contributing to the future of computing by
taking seriously the central thesis of logic programming: that a program is a theory, and
computation is deduction.

Meta-programs are an important class of programs. A meta-program is any program
that treats one or more other programs, called object programs, as data. Interpreters,
compilers, program transformers and debuggers are all examples of meta-programs. If our
idea that programs are first-order theories is a natural and useful one, clearly we should
be able to express meta-programs in this form. The natural way to view meta-programs is
as first-order theories over domains that are representations of their object theories. There
are two distinct ways in which this representation of object programs can be accomplished:
the non-ground and ground representations [5].

In the non-ground representation, object-level variables are represented by variables
at the meta-level. This imposes severe restrictions on the power of the meta-program;
for example, it cannot inspect the variables of the object program, and it cannot add
statements to the object program. The latter restriction arises because it is impossible
to distinguish between representations of statements containing free object-level variables
and incomplete statement representations containing meta-level variables.

In the ground representation, object-level variables are represented by ground terms
at the meta-level. This gives a much more powerful formalism for meta-programming in
which object-level variables can be manipulated in exactly the same way as any other
syntactic element of the object program. If the entire object program is represented as a
single term in the meta-program, it is easy to add, remove or change statements in the
object program, and object-level goals can be proved by means of a meta-interpreter [7].



2 1 INTRODUCTION

If meta-programming is to be done in logic, there is no obvious alternative to making
the ground representation effective. There is surely little prospect of discovering a logic in
which meta-programs using a non-ground representation can inspect object-level variables
and yet retain semantics as simple, intuitive and tractable as classical first-order logic.

Despite its power, elegance and logical purity, the ground representation is rarely used
in current logic programming practice. This is because it appears to have the following
drawbacks:

e the representation of object programs as terms is too complex;

e meta-programming in the ground representation is laborious, because large proce-
dures are required to do simple things such as unifying object-level terms;

e object-level variables and their bindings must be handled explicitly, an overhead that
makes the meta-program unacceptably slow.

As a consequence of these perceived difficulties, unsatisfactory solutions to the problem
of meta-programming are commonly adopted. The majority of meta-programs written in
Prolog use the non-ground representation, and circumvent the inadequacy of that represen-
tation by resorting to non-logical facilities that have been added to the language for that
purpose. Programs that use the meta-logical predicates of Prolog such as var, nonvar,
assert and retract cannot be understood directly as theories, and therefore lose the ad-
vantages of a simple declarative semantics. They are much harder to debug and transform,
for example, and also harder to execute in parallel because the non-logical features have a
procedural component that implies sequential execution.

Several attempts have been made to address this deficiency of Prolog. The MetaProlog
language [1] provides more declarative forms of assert and retract by keeping track
of named theories, and has a mechanism for distinguishing between object-variables and
meta-variables when theories are updated. However MetaProlog is still mainly based on
the non-ground representation. The language 'LOG (pronounced quotelog) [3] directly
supports the ground representation of a Prolog-like language, and has built-in predicates
for creating such representations. The representations are based on lists, and a large part
of the labour of manipulating them is left to the programmer.

Godel is a logic programming language intended as a successor to Prolog. It aims
to have power and expressiveness similar to that of Prolog, but with greatly improved
declarative semantics. Godel also has a type system and a module system; the value of
these is well-known in software engineering. Indeed, these features greatly benefit Godel’s
meta-programming facilities.

Although it is possible to write programs using the non-ground representation in Godel,
the ground representation is far more important. Using the ground representation, Godel
gives completely declarative counterparts to Prolog’s var, nonvar, assert, retract, =..
etc. By providing the ground representation as an abstract data type, Godel frees the
programmer from concern with the details of the representation, and allows access to it at
a relatively high level by means of an extensive library of predicates, each with a precise
semantic definition. This renders meta-programming in Godel almost as straightforward
as it is in Prolog, with the advantage of declarative semantics, and answers the objec-



tions based on complexity and labour that have previously discouraged use of the ground
representation.

The thought of representing entire object programs, even Prolog object programs, as
single terms can seem rather daunting. In representing a Godel program, we have the extra
burden of object programs written in a much richer language. The representation has to
include the module structure of the object program, its type declarations, statements and
control annotations. It is, of course, these very features that enable effective use of the
ground representation in Godel.

In the remainder of this paper a specific representation for Godel programs in Godel
is described, a representation that is sufficient to meet the specifications of the meta-
predicates in Godel’s system modules. This representation is in a pure polymorphic many-
sorted logic, and does not use any features outside the Godel language. Apart from being
declarative, this logical representation theoretically allows construction of a tower of meta-
levels for free; that is, since the representation is a Godel term, it can itself be represented.
In practice the size of the representation increases dramatically with each meta-level and
becomes unmanageable for even small programs after the third or fourth level. The paper
demonstrates that as long as careful attention is paid to certain design considerations,
the representation in typed logic of a structure as complex as a Godel program can be
accomplished in a fairly straightforward way, and still allow standard access and update
operations to be performed simply and reasonably efficiently. The Godel programmer is of
course unaware of the details of the representation, as it is presented as an abstract data
type. This leaves the language implementors free to alter the structure at will.

The paper is organised as follows. In the next section a brief overview of the Godel
language is presented. The reader is given the flavour of meta-programming in Godel and
then a representation for Godel object programs is described in detail. Finally, we draw
some conclusions and suggest directions for future research.

2 The Godel Language

Space does not permit more than a cursory overview of Godel here. For a complete technical
description and specification the reader is referred to [6].

Symbols in Godel either begin with an upper case-letter, or are composed entirely of
non-alphanumeric characters. Variables begin with a lower-case letter. Gddel statements
and goals can have arbitrary first-order formulas in the body, and may also contain a
commit pruning operator, and the IF-THEN-ELSE conditionals of [8].

Godel has a type system based on polymorphic many-sorted logic. The statements of a
Godel program are written in a language defined by a set of language declarations. Every
symbol in the language has a declaration that places it in one of the six categories: BASE,
CONSTRUCTOR, CONSTANT, FUNCTION, PROPOSITION and PREDICATE. The types (01" Sorts)
of this language are built from the symbols declared as bases and constructors, together
with parameters, in the same way that terms are built from constants, functions and
variables. Every constructor symbol is assigned an arity by its declaration. Parameters
provide polymorphism; they are type variables and range over all the type symbols in the
language. Thus given the declarations



4 2 THE GODEL LANGUAGE

BASE Hat.
CONSTRUCTOR List/1.

we have a type Hat, a polymorphic type List(a), and instances of this type List (Hat),
List(List(a)) and so on.

When a constant, function or predicate symbol is declared, it is assigned a domain
and/or range type as appropriate from this set of types. Functions and predicates may
also be specified as prefix, infix or postfix operators by including an indicator in their
declaration. A typical operator declaration might be

FUNCTION + : yFx(510)
Integer
* Integer
-> Integer.

The indicator yFx(510) specifies the precedence and associativity of the operator.

Godel predicates may have control declarations, called DELAY declarations. These are
syntactic variants of the when declarations of NU-Prolog [10]. DELAY declarations have the
form

DELAY Atom UNTIL Condition

where Atom is an atom (the head) and Condition is constructed from NONVAR(var),
GROUND (var), TRUE, and connectives & and \/. Variable var must occur in Atom. De-
lay declarations influence the computation rule as follows: if a call unifies with Atom, it is
delayed until it becomes an instance of Atom and then until Condition is satisfied. There
may be several delay declarations for the same predicate, provided no pair of heads have
a common instance.

Most Godel modules consist of two parts, a local part and an export part. The local
part of a module is indicated by a LOCAL or MODULE module declaration. The export part
is indicated by an EXPORT or CLOSED module declaration. These keywords are followed by
the name of the module. Modules are linked by IMPORT declarations that name imported
modules.

The export part of a module can contain IMPORT declarations, language declarations
and control declarations. The local part can contain IMPORT declarations, language decla-
rations, control declarations and statements. If a module consists only of a local part, it
has a MODULE declaration rather than a LOCAL declaration. The keyword CLOSED appearing
in the export part of a module implies that it is a system module and specially protected.
Modules that are not closed are said to be open.

A Godel module exports all the symbols declared in its export part, and all the symbols
it imports into its export part. The declaration

IMPORT Hats.

appearing in a part of a module imports all the symbols exported by module Hats into that
part of the module. Thus a module can import module Hats either directly (by naming
Hats in an import declaration) or indirectly (by importing another module that imports
Hats into its export part). The set of symbols declared in and imported into both parts of



a module forms the module language, and is the language in which the statements of the
module are written.

We say that a module M refers to a module N if either part of M contains the declaration
IMPORT N. We define the relation depends upon to be the transitive closure of the relation
refers to. A Gadel program is then a set of modules, consisting of one main module that
is not imported by any other module, together with all the modules upon which this main
module depends.

The definition of a type in a Godel program is the set of constants and functions that
have that type as their range type. The definition of a predicate (or proposition) in a Godel
program is the set of statements in the program that have that predicate (or proposition)
in the head. The definition of a predicate or proposition must reside entirely within the
module that declares it. Similarly, the definition of a type must reside within the module
that declares its top-level constructor, or that declares the type itself if it is a base type.

Godel is flexible in allowing overloading. The only condition on the naming of symbols
is that distinct symbols cannot be declared in the same module with the same category,
name and arity. The data structures described in this paper make liberal use of overloading;:
there are several instances where a function and its type have the same declared name.

The name that appears in the declaration for a symbol is called the declared name of
the symbol. The possibility of overloading means that this name is not necessarily unique.
In order to form the ground representation, we need the flat name of the symbol, which
is the quadruple consisting of the name of the module in which the symbol is declared, its
declared name, its category and its arity. The condition imposed on naming ensures that
this quadruple uniquely identifies the symbol. The flat form of a program is obtained by
replacing each occurrence of the declared name of a symbol in the program by its flat name.
The flat language of a program is the language defined by the set of language declarations
in the flat form of the program.

Godel provides a rich set of system modules, such as Integers, Lists, Rationals,
Floats, Strings, Sets and IO to support the commonly used data types and common
operations on those types. Importing the Lists module makes the conventional notation
for lists available. Similarly importing Strings allows the familiar notation "abcd" to be
used for sequences of characters.

We conclude this overview with a tiny example program. The module Inclusion
defines a predicate IncludedIn which can be used to check that all the elements of a
list also appear in another list. This module forms a program together with the module
Lists and the module Integers (which is imported into the export part of Lists and so
indirectly into Inclusion).

MODULE Inclusion.
IMPORT Lists.
PREDICATE IncludedIn : List(a) * List(a).

IncludedIn(x,y) <-
ALL [z] (Member(z,y) <- Member(z,x)).



6 3 META-PROGRAMMING IN GODEL

3 Meta-programming in Godel

Three system modules are provided by Godel for meta-programming in the ground repre-
sentation: Syntax, Programs and Theories. The Theories module, which is concerned
with representing full first-order theories (rather than logic programs) is outside the scope
of this paper.

The Syntax module is concerned with representing object expressions in Godel syntax,
and is imported into the export parts of both Programs and Theories. The export part
of Syntax declares the abstract data types

BASE Name, Type, Term, Formula, TypeSubst, TermSubst,
VarTyping.

Terms of type Name represent the names of symbols; terms of type Type, Term, and Formula
represent types, terms, and formulas, respectively; terms of type TypeSubst and TermSubst
represent type and term substitutions; and terms of type VarTyping represent variable
typings (a variable typing is set of assignments of variables to types).

Syntax exports many predicates for manipulating these types. For example

PREDICATE And : Formula * Formula * Formula.

And(u,v,w) is intended to be true when w represents the conjunction of the formulas
represented by u and v.

The module Programs supports the representation of Godel programs as terms, and
exports the abstract data type Program. The export part of Programs also declares a type
ModulePart and constants

CONSTANT Export, Local, Closed, Module : ModulePart.

to represent the part keywords of module declarations.

A typical predicate exported by Programs is the predicate FormulaInModule that is
used to check whether a term of type Formula represents a formula that is valid in the
language of a specific module. The declaration of FormulaInModule is

PREDICATE FormulaInModule :

Program % Representation of a program.
* String % Name of a module in this program.
* ModulePart % Representation of a part keyword of this module.
* VarTyping % Representation of a variable typing in the
% flat language of this module.
* Formula % Representation of a formula in the
% flat language of this module.
* VarTyping. % Representation of the variable typing obtained by

% combining the variable typing in the fourth argument
% with the types of all free variables occurring in
% the formula.



Among many others, the Programs module also exports a pair of predicates called
StringToProgramFormula and ProgramFormulaToString. The former invokes the Godel
parser in order to convert the intuitive representation of an object formula as a String
into its ground representation. The latter works in the opposite direction, generating a
string from the Formula abstract data type. These predicates are similar to the built-in
primitive <=> of 'LOG [3].

The predicate Succeed invokes a full-scale interpreter for Godel object programs. Its
declaration is

PREDICATE Succeed :

Program % Representation of a program.
* Formula % Representation of the body of a goal in the
% flat language of this program.
* TermSubst. % Representation of a computed answer for this goal

% and the flat form of this program.

There are several other similar predicates in Programs that provide different flavours of
interpreter.

To facilitate the creation of representations of object programs, Godel provides a utility
called the program compiler. This takes the source of the object program and generates
its ground representation in a file. The system module ProgramsI0 exports a predicate

PREDICATE GetProgram : InputStream * Program.

that reads the representation from the file. This IO operation is not declarative, but as
long as Godel programmers keep all IO in the top-level module the logical purity of the
majority of the program is preserved.

4 Representing Godel Syntax in Godel

In this section we discuss the representation of syntactic expressions in polymorphic many-
sorted logic: symbol names, types, terms and formulas. These objects are represented
independently of the context of any particular object program, by structures declared in
the Syntax module.

The abstract data type Name is provided to represent symbol names. The Name type is
the basic unit from which syntax is constructed; the Syntax module can fulfil its specifica-
tion without ever examining the internal structure of an Name term, except in one case only:
since Name is an abstract data type, Syntax must provide a means for the programmer to
create instances of the type.

Clearly we would like Godel meta-programs to be independent of any particular ob-
ject program, so we must avoid having to declare explicitly the meta-level constants that
represent object-level names. We need a data type that has enough instances already
available, and the possibility of an easily defined mapping between these instances and the
object-level names. This clearly suggests using the String type.

We will see later that for representing Godel programs it is convenient to have the
four components of Godel flat names explicit in the Name term so that they can be easily



8 4 REPRESENTING GODEL SYNTAX IN GODEL

extracted and separated. Godel flat names are therefore represented by the following
function, declared in the local part of Syntax:

FUNCTION Name :

String % Name of module where symbol is declared.
* String % Declared name of symbol.
* Category % Symbol’s category.
* Integer % Symbol’s arity.
-> Name.

The base type Category gives the category of the symbol and is defined by six constants:

CONSTANT
Base, Constructor,
Constant, Function, Proposition, Predicate : Category.

Since the Syntax module is not dedicated to the representation of Godel programs,
Name must also support the representation of names other than flat names. For this the
function

FUNCTION SimpleName :
String
-> Name.

is used; the argument can be any string.
Object types are represented by ground terms built from the following two functions:

FUNCTION BType :
Name % Name of base type symbol.
-> Type.

FUNCTION Type :

Name % Name of constructor symbol.
* List(Type) % List of argument types.
-> Type.

The Type function represents a compound type with its arguments in a list, and the
BType function represents a base type. This strategy follows a principle of good logic
programming style (see [9]) that the top-level function symbol of a term should express
maximum information about the term.

Type parameters are represented by ground terms using the function Par:

FUNCTION Par :

String % String representing the parameter name.
* Integer % Parameter index.
-> Type.

The index argument is provided so that type parameters can be renamed by simply incre-
menting the index. This needs to be done, for example, when finding the type of a term
(see the algorithm in [6]).

In a similar way to types, object terms are represented by functions of type Term:



FUNCTION CTerm :
Name % Name of constant symbol.
-> Term.

FUNCTION Term :

Name % Name of function symbol.
* List(Term) % List of argument terms.
-> Term.

and object atoms by functions of type Formula:

FUNCTION PAtom :
Name % Name of proposition symbol.
-> Formula.

FUNCTION Atom :

Name % Name of predicate symbol.
* List(Term) % List argument terms.
-> Formula.

Of course, since this is a ground representation, object-level variables are represented
by ground terms at the meta-level. Like those used to represent parameters, these terms
also have an index argument, in this case to facilitate standardisation apart.

FUNCTION Var :

String % String representing the variable name.
* Integer % Variable index.
-> Term.

Representations of formulas, which are all terms of type Formula, are built from terms
representing atoms, the constant Empty (representing the empty formula), and functions
representing connectives. Among these are the unary function ~’, binary functions &’,
\/?, =>?, <= and <->’. Quantifiers are represented by

FUNCTION All, Some :

List(Term) % List of quantified variables.
* Formula % Quantified formula.
-> Formula.

and commits by

FUNCTION Commit : % Full Goedel commit.
Integer % Commit label.
* Formula % Formula in the scope of this commit.
-> Formula.

Lastly, there are four functions to represent four different flavours of conditional, of which
the most sophisticated is



10 5 REPRESENTING A GODEL PROGRAM IN GODEL

FUNCTION ISTE : % Quantified IF-THEN-ELSE.
List(Term) % List of quantified variables.
* Formula % Condition.
* Formula % Then part.
* Formula % Else part.
-> Formula.

5 Representing a Godel Program in Godel

We now come to the main topic of this paper, which is the structure of terms of type
Program. Each Program term represents an entire Godel object program, including its
module structure, language declarations, control declarations and statements. It is actually
the flat form of the object program that is represented; in this form every symbol has a
unique name and there is no overloading.

Clearly, a dictionary structure of some kind is required to keep all these components
together and readily accessible in one term. Unfortunately, there is no convenient logi-
cal data structure that will allow us to access the data in constant time. It is well-known
among compiler constructors that users (or in our case, perhaps automatic program synthe-
sisers) sometimes declare large numbers of symbols in a lexical order, causing catastrophic
degradation in the performance of simple binary tree dictionaries because the ordered in-
sertion creates linear structures; a balanced tree dictionary is therefore appropriate. We
also observe that lookup operations are performed very much more frequently than update
operations on the Program structure, so the additional cost of rebalancing after insertions
and deletions is not significant. We have chosen (arbitrarily) to use AVL-tree dictionaries,
although other schemes (such as 2-3 trees) are available which, like AVL-trees, guarantee
logarithmic time for lookup, insertion and deletion. Algorithms for insertion and deletion
can be found in [12]; they are straightforward to code as Horn-clauses, see for example
2, 11].

In accordance with the principle of encapsulation, the predicates that manipulate dic-
tionaries are provided by a subsidiary module AVLTrees that is imported into the local
part of the Programs module (and is therefore invisible to the users of Programs). Each
dictionary associates a key and a value. AVLTrees exports the constructor AVLTree/1 so
that the dictionary has the parametric type AVLTree(a), where parameter a is instantiated
to the type of the value the AVL-tree associates with the key. The key is always of type
String.

At the top level, every term of type Program has the 4-place function Program, whose
declaration is

FUNCTION Program :

String % Name of the main module.
* AVLTree (ModuleDefinition) % Module structure.
* Language % Flat language of the program.
* AVLTree (ModuleCode) % Statements and delays.

-> Program.



5.1 Representing the Module Structure 11

The four arguments represent the three main components of a Godel program: the module
structure (represented by the first two arguments), the flat language, and the program
statements and delay declarations expressed in this flat language. We consider each of
these in turn.

5.1 Representing the Module Structure

The module structure of a Godel program is a tree rooted at the main module. The set of
modules making up the program form the nodes of the tree, and the edges are formed by
import declarations. The edges can be divided into two classes, depending on whether the
import declaration is in the local part or the export part of the importing module.

It would, of course, be possible to use this tree structure directly to represent itself.
However, it is more convenient to use a dictionary that simply associates the name of each
module with the names of the modules that it imports. This structure has less duplication,
is easier to update, is more appropriate to the questions usually asked of it, and has the
useful property that the representation of each node is independent of its child nodes.

The module structure is represented by a dictionary of type

AVLTree (ModuleDefinition)
where the keys are module names. There is one function of type ModuleDefinition:

FUNCTION ModDef

OModuleKind % What kind of module this is.
* List(String) % Import declarations in export part.
* List(String) % Import declarations in local part.

-> ModuleDefinition.
and the type OModuleKind is defined by
CONSTANT NormalKind, ClosedKind, ModuleKind : OModuleKind.

These constants indicate whether the named module has an ordinary export and local part,
is closed, or has a MODULE keyword in its local part and no export part, respectively.

For example, if on looking up the name "Hats" in the module structure we obtain the
term

ModDef (NormalKind, [], ["Lists"])

then Hats is an ordinary module that has the declaration IMPORT Lists in its local part.

5.2 Representing the Program Language

The structure of the term used to represent the flat language of the object program has
an important effect on the efficiency of the system, and it must meet several different
requirements.

1. It must contain a representation of the declaration of every symbol in the program.



12 5 REPRESENTING A GODEL PROGRAM IN GODEL

2. It should be able to act as the symbol table for the parser, and handle overloading.
When the Godel parser meets a declared name in the program source, it needs to
look up that name in the symbol table and recover a list of all the symbols that have
that declared name.

3. It should allow access to the declaration of any symbol given its flat name. Speed is
important since the declaration of every symbol in an expression must be examined
during the process of validating the expression with respect to a language, and such
validations are performed frequently in routine meta-programming.

4. Tt is often necessary to validate an expression with respect to one of the various views
of the program language, such as the export language of a specific module. It should
therefore be possible to retrieve any of these views from the program language, and
do so at reasonable cost.

We also consider it important that the representation is as compact as it can be while
meeting the above requirements.

A naive approach to representing the language structure might be as a simple dictionary
linking flat names with their declarations. For example, the string

"Hats.Topper.Constant"

might represent the flat name of the constant Topper in the module Hats, and could be
used as a key to index the declaration of this constant. However, this scheme does not
meet requirements 2 and 4 very well.

To solve this problem we make use of the internal structure imposed on the Name type in
Syntax. We can then make use of all the components of the name to minimise the number
of comparisons that are made for each access. The idea is to use nested dictionaries: the
outer containing an entry for each module, which entry is in turn a dictionary linking
each declared name in the module with all the symbols declared in the module with that
declared name, and their declarations.

As far as the representation of syntactic expressions is concerned, any name can appear
anywhere. The Syntax module is unaware of the concepts of module, category and arity,
even though they appear in the Name structure. However, when a declaration for a name
is inserted into the representation of a program, the Programs module ensures that the
components of the name are consistent with its declaration. We can therefore safely assume
that any name that has the string "Hats" as its module component is declared in module
"Hats" or has no declaration at all.

The flat language of the object program and the other flat languages it defines are
represented by terms of type Language, formed from the function®

FUNCTION Language :
AVLTree (ModuleDescriptor)
-> Language.

IThis function is a remnant of a previous design incarnation; it is not essential for the representation,
but gives the term representing the program language a simple (base) type.



5.2 Representing the Program Language 13

The key for the dictionary AVLTree (ModuleDescriptor) is the name of a module, and
the base type ModuleDescriptor is defined by

FUNCTION Module :

Accessibility % Which symbols are accessible.
* CategoryTable % Dictionary of symbols.
—-> ModuleDescriptor.

The Accessibility argument is present to satisfy requirement 4. It is a flag that can
take two values:

BASE Accessibility.

CONSTANT Exported, Hidden : Accessibility.

The accessibility flag determines the role that this module plays in the language as a
whole by indicating which of the symbols declared in the module are actually present in
the language. If the accessibility of the module is Hidden, all the symbols it declares are
present; if its accessibility is Exported only those symbols declared in the export part of
the module are present in the language.

In the representation of flat language of the program, all the module descriptors have
an accessibility of Hidden. In, for example, the representation of the flat language of some
component module (the language in which the statements of the module are written) the
module descriptor for the module itself has accessibility Hidden; the only other module de-
scriptors present are those for the modules it imports, and they all have their accessibilities
set to Exported.

Different views of the program language are easily constructed in this representation.
For example, to find the flat language of a module M, first use the representation of the
module structure to find all the modules M imports, directly or indirectly. Extract the
ModuleDescriptor terms for these modules from the program language, set their accessi-
bility to Exported and place them in a new dictionary. Finally, add to this dictionary the
ModuleDescriptor for M with accessibility Hidden.

Since there are typically only a dozen or so modules in a medium-sized Godel program,
this is not a large computation. In an implementation using something like the structure-
sharing techniques of the WAM, this procedure is also quite space efficient, because the
representations of different views of the same language share the bulk of their structure.

In an early version of the ground representation® the module languages were pre-
calculated, so the entry for each module in the language representation included the dec-
larations of all symbols accessible in that module instead of just those symbols declared
in the module. Although computationally efficient, this made the language representation
very large because each declaration had to appear many times. This is a valid approach,
but the space saving seems to be more important than the small additional computation.
The size of the representation is however a critical factor at higher meta-levels, where the
representation is itself represented; unless special techniques are used these terms quickly
become very large indeed.

2Due to Alistair Burt



14 5 REPRESENTING A GODEL PROGRAM IN GODEL

The other argument of the ModuleDefinition structure is a term describing all the
symbols declared in this module. This term has type CategoryTable.

FUNCTION Categories :

AVLTree(List (SymbolDescriptor)) % Symbols declared as Bases
% or Constructors.
* AVLTree(List (SymbolDescriptor)) % Symbols declared as Constants,

% Functions, Propositions or
% Predicates.
-> CategoryTable.

As a slight optimisation, this dictionary is split into two parts. Since it is part of the flat
name, we can use the category of a symbol as an index to reduce the overhead of locating
its entry in the language representation. However, we have also to meet requirement 2 and
it is crucial to the usability of the system that the parser is as fast as possible. When the
parser meets a symbol in its input, it can’t tell the category of the symbol in advance, but
it can tell from the context whether the symbol is part of a type or part of a formula. We
can therefore divide the symbols into two classes without compromising the efficiency of
the parser, whereas if we separated all six categories, the parser would have to search four
dictionaries for every symbol it encountered while parsing a statement or goal.

The two AVL-trees associate the declared name of a symbol with the list of declarations
with this declared name in this module and class. Linear search is completely adequate
here; overloading is uncommon so there is usually only one entry in the list. The represen-
tation used for declarations encodes the category, and where appropriate the arity, of the
symbol so that the correct declaration is uniquely identified by the flat name.

Every symbol is described by a structure of type SymbolDescriptor with the following
function:

FUNCTION Symbol :
Accessibility
* Declaration
—-> SymbolDescriptor.

The Accessibility component is the same as the flag that guards the entire module
descriptor, but here it indicates where the symbol is declared. An accessibility of Exported
indicates a symbol declared in the export part of the module; such symbols are always
visible regardless of the accessibility of the module. Hidden indicates a symbol declared in
the local part, which is only visible if the accessibility of the module is also Hidden.

Finally, there are constants of type Declaration to represent the declarations of base
and proposition symbols, and functions with range type Declaration to represent the
declarations of constructor, constant, function and predicate symbols together with the
attributes, such as type, that these declarations provide.

CONSTANT BaseDecl, PropositionDecl : Declaration.



5.3 Representing the Program Code 15

FUNCTION ConstructorDecl :
Integer % The arity of the constructor.
-> Declaration.

FUNCTION ConstantDecl :
Type % The type of the constant.
-> Declaration.

FUNCTION FunctionDecl :

Integer % The arity of the function.
* FunctionInd % Its indicator.
* List(Type) % Its domain type.
* Type % Its range type.

-> Declaration.

FUNCTION PredicateDecl :

Integer % The arity of the predicate.
* PredicateInd % Its indicator.
* List (Type) % Its domain type.

-> Declaration.

The types FunctionInd and PredicateInd and the constants and functions that define
them are declared in the export part of Programs and so are public. These represent
the indicator component of functions and predicates declared in the object program in a
straightforward way.

5.3 Representing the Program Code

The final element of the representation is the fourth argument of the Program function,
the dictionary containing representations of the object program’s statements and control
declarations. By looking up the flat name of a predicate symbol in this dictionary all
the statements in the definition of the predicate, and all the delay declarations for the
predicate can be found. Note that there is no predicate exported by the Programs module
that is capable of returning the statements (or delay declarations made in the local part)
of a closed module; these are completely protected from user access. In practice we do not
need to represent them, and only the delay declarations that appear in the export parts
of the closed modules are actually present in the entries for these modules in the code
dictionary.

It is convenient to organise the code dictionary analogously to the language dictionary,
with two nested AVL-trees exploiting the flat name structure. The outer structure, keyed
on the module name, has type AVLTree (ModuleCode); the ModuleCode type is defined by

FUNCTION Code :
Integer
* AVLTree(List(PredicateDefinition))
—> ModuleCode.



16 5 REPRESENTING A GODEL PROGRAM IN GODEL

The Integer argument here is not part of the representation in logic, but is used
in the implementation of Succeed and the predicates similar to it that simulate Godel
computations for representations of object goals with respect to representations of object
programs. Rather than interpreting the representation directly, it is more efficient to reflect
the representation of program and goal down to the object level, perform the computation
directly to obtain a computed answer, and reflect this answer back up to its meta-level
representation. The programmer is of course completely unaware of this implementation
technique. To facilitate this technique, and reduce the overhead of reflection, the system
retains the code compiled by the reflection process and only recompiles a module of an
object program when necessary. Recompilation is required when the module represented
in the object program to be executed is different from a module with the same name that
was previously reflected to produce the compiled code. This integer argument acts as a
version number and allows the system to keep track of such changes.

Dividing the representation of the object program code into separate modules allows the
reflection operation to recompile module by module only those modules that have changed
since the last time they were reflected, rather than having to recompile the whole object
program. A better scheme would be to actively reflect only predicates whose definition
has changed, or even to operate statement by statement. This leads naturally towards a
representation for dynamic object theories like that used in MetaProlog [1].

The code portion of each module is represented by a term of type

AVLTree(List (PredicateDefinition))

which is keyed by the declared names of predicates declared in the module. Overloading
of course means that there can be more than one such predicate per declared name, but
these can be distinguished by their arities. Hence there is a list of PredicateDefinition
terms for each declared name, each with the function

FUNCTION PredDef

Integer % The arity of the predicate.
* List(Formula) % List of statements in the definition.
* List(Delay) % Delay declarations in the export part
* List(Delay) % Delay declarations in the local part.

-> PredicateDefinition.

It does not make sense for a predicate to have delay declarations in both the export
part and the local part of the module that declares it, so one of the lists of representations
of delay declarations is always empty.

The base type Delay is not exported by Programs. Instead delay declarations appear
to the programmer in two parts: the head atom, represented by a term of type Formula,
and the condition, represented by a term of type Condition. The Delay function joins
these components in an Delay term.

FUNCTION Delay :
Formula
* Condition
—-> Delay.



17

Delay conditions are represented by terms built from functions of type Condition in
an obvious way.

CONSTANT TrueCond : Condition.

FUNCTION Nonvar, Ground :
Term
-> Condition.

FUNCTION And, Or :
Condition
* Condition
-> Condition.

6 Conclusion

We have described a scheme for repesenting Godel object programs in Godel. This is not
the fearsome task it might appear to be at first sight. By presenting the representation to
the programmer as an abstract data type, providing an exhaustive library of predicates to
perform standard operations on the data type, and also providing a program compiler to
generate the representation from the object program source, the labour and complexity of
writing meta-programs in the ground representation is considerably reduced. When writing
a meta-program in Godel one can start on the problem straight away, without having to
set up the representation first.

A prototype implementation of the Goédel modules Syntax and Programs has been
produced, based on the above representation. It has been and is being used successfully by
students and researchers at Bristol and elsewhere to build programs such as interpreters,
theorem provers, partial evaluators, declarative debuggers, and knowledge assimilators.

The reader’s attention is especially drawn to [4], in which some experiments in partial
evaluation of Godel meta-programs are reported. These suggest that, if the meta-program
is carefully written, a large part of the computational overhead of using the ground repre-
sentation can be compiled away. Partial evaluation is also effective in reducing the over-
head that results from using an abstract data type when the underlying engine is highly
optimised for pattern matching. In addition, we have the prospect of increased parallelism
obtained by eliminating the sequential properties of Prolog’s extra-logical features. Finally,
a small computational overhead seems a more than reasonable price to pay for delarative
semantics.

More research needs to be done on the topic of compilation techniques for meta-
programs, in order to reduce the overhead further. It will also be interesting to consider
how the underlying system can provide support for the ground representation, for example
by using implicit reflection to implement meta operations such as unification of object
terms.

This research described here is, of course, only the first step on the road to effective
use of the ground representation, but we contend that we can have the full power of the
ground representation with at least the convenience and (given sophisticated compilation



18 REFERENCES

techniques and parallelism) efficiency of the non-logical route; and we can have all this
without straying from first-order logic.

Acknowledgements

I am particularly indebted to John Lloyd and Pat Hill for designing the Godel language and
encouraging this research; they also commented on drafts of this paper. Special thanks are
due to Jiwei Wang for developing a fast parser (with excellent diagnostics) and compiler for
Godel, and to Corin Gurr who demonstrated the value of partial evaluation in compiling
Godel meta-programs. Thanks also to Dominic Binks, Nick Moffat and André de Waal
for the benefit of their practical experience in making use of this work. This research was
supported by ESPRIT Basic Research Action 3012 (Compulog).

References

[1] K.A. Bowen and T. Weinberg. A meta-level extension of Prolog. In Proceedings of
1985 Symposium on Logic Programming, Boston, pages 669-675, 1985.

[2] Ivan Bratko. Prolog Programming for Artificial Intelligence. Addison-Wesley, 1986.

[3] I. Cervesato and G.F. Rossi. Logic meta-programming facilities in 'LOG. In Alberto
Pettorossi, editor, Proceedings of the Third International Workshop on Metaprogram-
ming in Logic, June 1992.

[4] C.A. Gurr. Specialising the Ground Representation in the Logic Programming Lan-
guage Godel. Technical Report CSTR-92-30, University of Bristol, November 1992.

[5] P.M. Hill and J.W. Lloyd. Analysis of meta-programs. In H.D. Abramson and M.H.
Rogers, editors, Meta-Programming in Logic Programming, pages 23-52, MIT Press,
1989. Proceedings of the Meta88 Workshop, June 1988.

6] PM. Hill and JW. Lloyd. The Gédel Programming Language. Technical Re-
port CSTR-92-27, University of Bristol, October 1992.

[7] P.M. Hill and J.W. Lloyd. Meta-Programming for Dynamic Knowledge Bases. Tech-
nical Report CS-88-18, Department of Computer Science, University of Bristol, 1988.

[8] L. Naish. Negation and quantifiers in NU-Prolog. In E. Shapiro, editor, Proceedings of
the Third International Conference on Logic Programming, London, pages 624634,
Lecture Notes in Computer Science 225, Springer-Verlag, 1986.

[9] Richard A. O’Keefe. The Craft of Prolog. MIT Press, 1990.

[10] J. A. Thom and J. Zobel. NU-Prolog Reference Manual, Version 1.3. Technical
Report, Machine Intelligence Project, Department of Computer Science, University of
Melbourne, 1988.



REFERENCES 19

[11] M. van Emden. AVL Tree insertion: a benchmark program biased towards Prolog.
Logic Programming Newsletter, 2, Autumn 1981.

[12] N. Wirth. Algorithms + Data Structures = Programs. Prentice-Hall, 1976.



