Godel Users’ Manual

(Release 1.3, June 1993)

A.F. Bowers and J. Wang

Department of Computer Science
University of Bristol
University Walk
Bristol BS8 1TR
UK

email: {bowers, jiwei}@compsci.bristol.ac.uk

Contents

1

2

Introduction

Using the Godel system

2.1 Basic system commands
2.2 Godel utilitieso
2.3 Debugging facilities
2.4 Interface to Unix
2.5 Executing queries Lo

Use of the Godel tracer

Computational model

4.1 Lloyd-Topor transformation,
4.2 Safe negation
4.3 Computationrule
4.4 Constraint solvingo
4.5 Set unification Lo

Some hints for good programming in Godel
Facilities absent from this release

Known bugs and limitations
Acknowledgements

References

w

1O O Ul

11
11
12
12
12
13

14

16

17

18

19

1 Introduction

This document explains the accompanying implementation of the Gédel language. It also
serves as a supplement to The Godel Programming Language by P.M. Hill and J.W. Lloyd,
concentrating on the practical use of the Godel Language.

The supplied Godel system is implemented in SICStus Prolog. The Godel parser runs
at about 120 lines per sec. on a SPARC 2. Goédel programs are transformed to SICStus
Prolog and compiled to native code. Without any delay declarations, negations or IF-
THEN-ELSE constructs, Godel programs run at the same speed as equivalent SICStus
programs (about 600K LIPS on a SPARC 2). A carefully written Gédel program (with all
features) should run at about half of the speed of SICStus.

Please send bug reports to goedel@Qcompsci.bristol.ac.uk.

All suggestions for improvement are welcome.

2 Using the Godel system

To use the Godel system, you need to run the executable file called ‘goedel’. (Instructions
for installing the Godel system can be found in the README file in the top level directory
of this release.) If you do not have SICStus Prolog, your Gédel system will be based on
the SICStus runtime system. There are a few differences between this Runtime Godel and
Godel based on full SICStus Prolog, and these will be indicated where appropriate. Having
entered the Godel system, you will see a prompt ‘[] <-" at which you may type commands
or Godel queries. Commands always begin with a semi-colon (;) character to distinguish
them from queries. All commands and Godel queries end with “.” followed by a carriage
return (CR).

The commands available in the Godel system are presented below. Some commands
take one or two parameters. The parameters are either a BigName (a sequence of alphanu-
meric characters starting with a capital letter, e.g. Module) or a String (any sequence of
characters enclosed in double quotes, e.g. "File"). The syntax of each command is given
in brackets after its name. The commands are divided into four groups: basic commands
and commands for compiling and loading Godel programs; utilities for performing other
operations on Godel files; debugging utilities, and an interface to Unix.

2.1 Basic system commands

Help (;h.) Gives rudimentary help information and lists the abbreviations that may be
used.

Quit (;quit.) This command returns you to the Unix shell.

Compile (;c Module.) This compiles the given module. In compiling a module, the
Godel system looks for files whose name consists of the module name and the exten-
sion ‘.loc’ or ‘.exp’. Error and warning messages are printed out should there be any
syntax errors. Programs with warning messages may still be correct, but our advice
is “don’t ignore any warning message”. There may be several error messages for a
single error, due to Goédel$ overloading mechanism. Not all the error messages are
relevant, but it’s advisable to read through them all.

If there is no error in the program, three files will be generated. The names of the
files consist of the module name and extensions ‘.Ing’; “.pl’ or ‘.ql’. (If you are using
Runtime Godel, only the ‘.Ing” and ‘.pl’ files are generated. In this case, the ‘.pl’
file is not compatible with that generated by a normal Gédel system.) The ‘.Ing’
file contains the language of the module. The .pl’ file is the compiled Godel code in
Prolog; and the ‘.ql’ file is the ‘.pl’ file compiled by SICStus.

If the given module imports some other modules, and those modules have already
been compiled, the ‘;¢’ command will load their ‘.Ing’ files instead of parsing those
modules.

Make (;m Module.) This compiles the given module, and also compiles all the user mod-
ules it depends upon, whether or not these have already been compiled..

Load (;1 Module.) This loads the compiled module and the user modules it depends
upon from their ‘.Ing” and ‘.ql’ files (‘.p!’ files in the case of Runtime Godel). Absence
of any of these files causes the load command to abort. After loading a Godel
program, the system prompt changes to ‘[Module] <-’) where ‘Module’ is the name
of the main module in the program.

Make and Load (;ml Module.) This makes and loads the module into the system. Any
error causes the ;ml command to abort.

Check Syntax (;cs Module.) This command checks the syntax of the given module but
does not create any files. It is useful to determine the syntactical correctness of an
incomplete program.

Save States (;save File Goal.) This instructs Godel to save the current state (the
loaded Godel program) into the executable file File. When File is run, Gédel will
start the execution of Goal. This command is not available in the Runtime Godel.

2.2 Godel utilities

Program Compile (;pc Module.) This creates the ground representation of the spec-
ified program whose main module is Module in a file whose name consists of the
main module name and ‘.prm’ extension. If there is any syntax error in the specified
module and its dependent user modules, the ground representation of the module is
not created.

Program Decompile (;pd "File".) This takes the ground representation of a program
from the file whose name consists of the module name and ‘.prm’ extension, and
generates source files for all the component user modules of this program. Where
‘.exp’ and ‘.loc’ files already exist for one of these modules, they will be renamed
with “.exp.old” and ‘.loc.old’ extensions respectively, so that the existing source is not
immediately destroyed.

Script Compile (;sc Script.) This compiles a generated script in the file whose name
consists of the script name and ‘.scr” extension and produces ‘.Ing’, “.pl’ and ‘.ql’ files
so as to be loaded for execution. If you are using Runtime Godel, the ‘.ql’ file is not
created.

Flock Compile (;fc "File" "Flock".) This takes a flock and returns a Godel internal
representation of the flock in a file whose name consists of the flock name and ‘.fik’
extension. If there is an existing flock of the same name, the existing flock will be
overwritten. If there is any syntax error in the file of units, the ‘;fc’ commands aborts.

Flock Decompile (;fd "Flock" "File".) This takes a Godel flock and returns a file of
units. The flock should be in a file with the name consisting of the flock name and
“fik” extension. If there is an existing file of the same name, the existing file will be
overwritten.

Canonicalise Prolog (;cp "Filel" "File2".) This utility converts Prolog clauses or
terms in Filel into their canonical form in File2. Variable names are not preserved.

Decanonicalise Prolog (;dp "Filel" "File2".) This converts Prolog clauses or terms

in canonical form in Filel into standard form in File2.

2.3 Debugging facilities

Debug Compile (;dc Module.) This has the same effect as the ‘;compile’ command
except that it also incorporates debugging information into the compiled code for
the given module. Debug compiled modules run much more slowly.

Trace (;trace.) Switches on the tracer.
Notrace (;notrace.) Switches off the tracer.

Spy (;spy Predicate.) Sets spy points at all predicates or propositions with declared
name Predicate, regardless of their arity and the module in which they are declared.

Nospy (;nospy Predicate.) Removes spy points at all predicates or propositions with
declared name Predicate, regardless of their arity and the module in which they are
declared.

Nospyall (;nospyall.) Removes all spy points.

Type (;t Symbol.) Displays the declarations of all the constants, functions, propositions
and predicates in the goal language of the loaded program that have the declared
name Symbol.

2.4 Interface to Unix

cd (;cd "Directory".) Invokes the Unix ‘cd’ command. The ‘Directory’ argument must
be a string. If it is omitted, ‘;cd’ changes to the user’s home directory.

Is (;1s "Directory".) Invokes the Unix ‘Is’ command. The ‘Directory’ argument must
be a string. If it is omitted, ‘;Is’ lists the current directory.

more (;more "File".) Invokes the Unix ‘more’ command for the specified file.

Unix (;unix "Command") Execute a Unix command. If ‘Command’ is omitted, this enters

a Unix shell.

pwd (;pwd.) Invokes the Unix ‘pwd’ command.

2.5 Executing queries

A Godel query should be a goal in the goal language of the program whose main module
is the current module. The Godel system attempts to solve the query and return answer
bindings for the free variables appearing in it. If the query finitely fails, ‘No’ is printed.
If it can be solved with the empty answer substitution, ‘Yes’ is printed. Otherwise, the
answer substitution appears in the form:

x = Term,

for each free variable in the query. The system then prompts with a ?. Typing in ;
after the question mark causes the system to search for another solution. A carriage return
(CR) returns you to the main prompt.

An example session of using the Godel system follows.

% goedel

Goedel 1.3

Type ;h. for help.

[] <- ;1 Lists.

[Lists] <- Append(x, y, [1, 3]).

x =[],

y = [1,3] 7 ;
x = [17,
y=[3] 7;
x = [1,3],
y=107;
No

[Lists] <- ;1 Integers.
[Integers] <- x"2 +y°2=2"2 & 0<x<50 & 0<y<50 & O0c< z.

x = 3,

y =4,

z =57,
x =4,

y =3,

z=57;
x =5,

y = 12,
z =13 7
Yes

[Integers] <- ;ml EightQueens. % the EightQueens program can be found in

7

Reading file "EightQueens.loc"
Parsing module "EightQueens"
Compiling module "EightQueens"
Module "EightQueens" compiled.
Loading module "Eight(Queens"
[EightQueens] <- Queen(x).

x = [1,5,8,6,3,7,2,4] 7 ;
x = [1,6,8,3,7,4,2,5] 7 ;
x = [1,7,4,6,8,2,5,3] 7
Yes

[EightQueens] <- ;q.

h

% released directory program/demo/

3 Use of the Godel tracer

There are two modes of tracing in the Godel system, namely, trace and spy. Trace starts
tracing from the query, while spy only triggers the tracing at specified predicates. Trace
and spy work only with debug-compiled modules (see Debug Compile in the previous
section).

When the tracer is invoked, execution of the call, exit, fail and redo ports of each
debug-compiled procedure will be displayed. Each call has an unique index and each
exit, fail and redo has an index corresponding to their original call. At each entry,
you are prompted with 7 at which the following commands can be used.

a - abort: abort current query.

¢ - continue: continue execution without trace info.

f - free: let the tracer run free and print out all the trace info.
h - help: print this message.

1 - leap: leap to the next spy point.

n - next: next goal, the same as a carriage return.

r - redo: reenter the failed goal, valid only in "fail" entries.

s - skip: skip the trace info for executing the current goal.

1-9: set term display depth in the tracer.

Suspended and awakened goals are also printed out under entries suspend and awaken,
respectively. In a similar way to call, each suspend also has an unique index. Each
awaken has an index corresponding to its suspend.

In this release, the tracer does not mask off terms defined in system modules as abstract
data types. In a future release, a more sophisticated debugging tool will provide facilities
for properly displaying terms in an abstract data type.

The Godel tracer displays variables in the format _N. Variables in a suspended goal are
renamed when the goal is awoken. Module prefixes are attached to the predicate with a :,
e.g. Lists:Append([1,2], [3,4], _12345). Syntactic sugars are sometimes displayed
in the sugared form, e.g. lists and sets, and sometimes in the original form, e.g. the
Interval/3 function in the Integers module. Constraints are replaced by a variable and
cannot be seen in the trace. This can be seen in the following example.

[Integers] <- ;trace.

Tracing on

[Integers] <- x"2 + y°2=2"28& 1 <x<9&1<y<9.
0 call: _34205=_33909 7

redo: Integers:Interval(2,2,8) 7
exit: Integers:Interval(2,3,8) 7
call: Integers:Interval(2,_34008,8) 7

0 exit: _34710=_34710 7

1 call: Integers:Interval(2,_34104,8) 7
1 exit: Integers:Interval(2,2,8) 7

2 call: Integers:Interval(2,_34008,8) 7
2 fail: Integers:Interval(2,_34008,8) 7
1

1

3

3 exit: Integers:Interval(2,4,8) 7

-

<
|
g > w

Users of the Godel tracer need to be aware that Godel programs are converted into
normal form using the Lloyd-Topor transformations (see Section 4.1 and [Lloyd 87] p.
113) and it is the normal forms which are traced.

Commits are invisible in the Godel tracer. Furthermore, commits are ‘switched off’
when solving a negative goal (to be elaborated in the next section). The tracer does not
give any indication about commits being switched off.

The ‘redo’ command in the Godel tracer is limited to failed goals, due to implementation
difficulties. However, it is recommended that programmers use the non-failing style of
programming. That is, predicates are designed to succeed in the intended computation,
therefore the failure of a goal indicates program errors. In this case, the ‘redo’ command
should be useful to investigate the errors. The Godel tracer differs from the Prolog tracer
in that it does not have ‘break’. It is probably not necessary to have ‘break’ in the Godel
system, because one cannot modify the running program from the break level.

10

4 Computational model

The accompanying implementation of the Godel language maps Godel programs into Pro-
log. This has allowed us to build prototypes of the language quickly by using existing
logic programming techniques. However, the computational model of the Godel system is
limited by the existing implementation of Prolog.

This implementation of the Godel system uses a variant of SLDNF-resolution as its
procedural semantics. In this section, we shall try to explain this computational model.

4.1 Lloyd-Topor transformation

Let a program statement be Head <- Body, and a goal be <- Goal. Godel allows arbitrary
first-order formulas in Body and Goal. In order to execute Godel programs on an SLDNF-
resolution based system, Godel programs have to be transformed using the Lloyd-Topor
transformation [Lloyd 87, p113]. Because Wi \/ W2 and “SOME [x1, ..., xn] W are
handled by the underlying system, the transformation we use is syntactically different
from that in [Lloyd 87], but semantically the same. The difference is mainly that no new
clauses are generated in the transformation.

1. Replace A<~ Wi A ..AW A AV —W)AWiqg Ao AW,

2. Replace A<~ WiNA. .. AW A AV o W)AWa Ao AW,
by A Wi A AW AV S5 W)AV W) AWid A... AW,

3. Replace A« Wi AN...ANW;_1ATzy...Jz,WA...ANW,
byA(—Wl/\.../\m_l/\W/\Wi+1/\.../\Wm

4. Replace A« Wi A...ANW;_1 ANVxy.. NYe,W A...\NW,,
byA<—W1/\/\I/Vz_l/\—EleElxn—lW/\I/VHl/\/\Wm

5. Replace A« Wi A AW A A(VAW)AW Ao AW,,
by A« WA .. AW A AEVNVW)AW g AL AW,

6. Replace A« Wi A... AW A A(VVIW)AW A AW,
byA(—W1/\.../\Wi_l/_'V/_'W/\Wi_;_l/\.../\Wm

7. Replace A« Wi A AW, A=V~ W)AWig AL AW,
byA(—Wl/\.../\Wifl/\W/_'V/\WiJrl/\.../\Wm

8. Replace A« Wi A... AW, g A== WAW, 4 A AW,
byA(-Wl/\/\szl/\W/\WlJrl/\/\Wm

9. Replace A« Wi A...ANW;_1 AN—Nxy.. Ve, ,LWA...ANW,
byA<—W1/\AWZ,1AE|$15|$n_\W/\AWm

11

4.2 Safe negation

The safeness condition is imposed in the Godel system. In other words, negated subfor-
mulas of a goal are delayed until they contain no free variables. Furthermore, to ensure
the soundness of the negation as failure rule, commits are disabled inside the execution of
a negated goal.

These two restrictions are also applied to the execution of the condition in IF-THEN-
ELSE constructs. This is because IF Cond THEN ThenPart ELSE ElsePart is semanti-
cally equivalent to Cond & ThenPart \/ “Cond & ElsePart.

4.3 Computation rule

The computation rule in the Godel system, called the faithful computation rule, generally
selects the leftmost unsuspended goal, subject to the following caveats:

e constraints may be solved in any order that the system finds convenient;

e in some circumstances the order in which suspended goals are woken is undefined
(due to a limitation of SICStus Prolog).

If all the goals are suspended, the computation flounders.

Once the execution enters the scope of a commit, it must solve the scope entirely
before pruning can occur. If no literal in the scope can be selected, so that execution must
leave the scope of the commit before solving it completely, then that commit becomes
permanently disabled, that is it will never prune even if its scope is eventually solved.

The order in which clauses are selected in the execution of a Godel program is not
defined.

4.4 Constraint solving

Implementation of constraint solving in the modules Integers and Rationals is primi-
tive. The basic idea in the implementation is to use the coroutining mechanism to suspend
constraints until they become solvable. Sophisticated constraint solving methods are not
supported yet.

It’s hard to define what is currently available. Generally, this release supports:

1. Evaluating expressions with data structures defined in system modules Integers,
Rationals, Strings and Sets. For example, the following procedures can be exe-
cuted.

PREDICATE P : Integer.
P((2%3+4) Div 6).

PREDICATE Sum : Set(Integer) * Integer.
Sum({}, 0).
Sum(set, sub_total + x) <-

x In set &

192

Sum(set\{x}, sub_total).

PREDICATE AddPostfix : String * String.
AddPostfix(file_name, file_name ++ ".prm").

2. Generating integers in an interval. E.g. 1 < x =< 5.

3. Solving linear equations which are in triangular form. For example,

2xx+1 = y+2 & 3xy-2 = 1.

x/2 + y/3 = 5/6 & y/2 + 1/3 = 5/6.
4. Exhaustive search with coroutining.

X2 +y2=228&1<x<508&1<y<50&0<z.

4.5 Set unification

Full set unification is not implemented, because it would be too inefficient to support it at
the Prolog level. Unification can be performed for ground sets, and a variable and a set;
attempts to do more complex set unifications will flounder. For example,

[Sets] <- {1,2,3} = {3,2,1,2}.
Yes

[Sets] <- {1,2,3} = {3,2,1,4%}.
No

[Sets] <- x = {3,2,1,2,3}.

x={1,2,3} 7
Yes

Set operations which contains non-ground sets will be delayed until the non-ground sets
become ground. For example,

[Sets] <- x In ({y} + {z}) & y=1 & z=2.

x =1,
y=1,
z =27

X = 2
y=1,
z =2
No

[Sets] <- x In {y} + {z} & y=1.

Floundered. Unsolved goals are:

[user:sort([_37844],_38505) ,user:union([1],_38505,_38507),Sets:In(_37544,_38507)]

13

5 Some hints for good programming in Godel

Following are some hints on good programming style and how to effectively use the Godel
system.

e Godel programs are very close to logic specifications. Usually the program itself
serves as the specification. It is highly recommended that the naming of variables
and symbols be done properly in the sense that the name reflects the intended inter-
pretation of the object. Sometimes, it is difficult to give an object a good name. But
remember that if you cannot find a name for an idea, the idea is probably wrong.

e Singleton variables are most often produced by misspelling and unfinished clauses.
So do not ignore singleton variable warnings and unused quantified variable warnings.

e Be careful of the limitations of safe negation, and note that all pruning is disabled
within the condition of an IF-THEN-ELSE as well as within explicitly negated calls.
It is better to write procedures to be determinate wherever possible without using
commit to enforce determinacy. Experience suggests that it is a bad idea to use
the failure of a procedure to return information, even the information that an error
occurred, because testing for failure may compromise the efficiency of the procedure.
Return error indications in arguments instead. Failure is best reserved for indicating
programming errors.

e How to find out why your program is floundering.

It is our experience that if the logic of a program is correct the program should
run. When a goal flounders, it is useful to look at the quantifiers, negations, IF-
THEN-ELSE constructs and intensional sets. The floundering message may give you
some clue which part of program to look at. Particularly, local variables in the con-
dition part of IF-THEN-ELSE should all be quantified. Beware also of attempts to
unify nonground sets.

e How to write more efficient Godel programs.

The underlying Prolog system supports first argument indexing and tail recursion
optimisation. Because the mapping from Gdédel to Prolog is direct, the Godel system
does too. When properly used, first argument indexing and tail recursion optimisa-
tion can improve the speed by a factor of anything from 2 to 100.

e What are Godel’s counterparts to Prolog var, nonvar, =.., assert and retract?

Prolog’s var, nonvar, assert and retract are not supported in Godel because they
are not declarative. Univ (=..) would break Godel’s type system. However, the
meta-logical use of var and nonvar is supported by Godel meta programming facili-
ties, i.e. Variable/1 and NonVarTerm/1 in the Syntax module.

It is a common practice among Prolog programmers to write multi-moded predicates
(i.e. predicates that can run “backwards”) by using var to select between several

14

(hopefully equivalent) logics according to the mode of the call. Because Gddel does
not provide wvar, it is not possible to use this trick to have one entry point for sev-
eral procedures, and only in simple cases can efficient multi-moded procedures be
constructed. Where a relation is required to be computed in different modes, the
recommended technique is to implement a distinct predicate for each mode, with
a name suited to its mode. The modes can be enforced by delay declarations. Of
course, this means that the mode must be known at the point of call, but in practical
programs this is rarely a problem.

The meta-logical use of Prolog’s assert and retract is provided by Godel’s meta-
programming facilities, i.e. InsertStatement/4 and DeleteStatement/4 respec-
tively in the Programs module. There is no equivalent to assert and retract for im-
plementing global variables in Gdédel; instead add an extra argument to the relevant
predicates in order to pass around state information.

15

6 Facilities absent from this release

Several facilities of the Godel language are not implemented in this release.

1. The occur check is not implemented.

2. Full commit is not supported. Only bar commit and one solution commit are
allowed. Co-routining across the bar commit and one solution commit causes
the commit to be switched off.

3. Implementation of constraint solving is primitive as has been discussed in Sec-
tion 4.4.

4. The Godel system utilities: script-view, theory-compile and theory-decompile
are not, available.

5. The following system modules are not available: Floats, Numbers, NumbersIO,
Theories, and TheoriesIO.

16

7 Known bugs and limitations

There are a few known bugs or limitations which we have not had time to fix or
cannot be fixed in this implementation. These are as follows:

1. The parser is slow at sorting out heavily ambiguous experssions. For example,
it takes a few minutes for the parser to parse x = 1+2+3+4+5+6+7+8+9 in a
module which imports Integers, Rationals and Sets modules, because + has
been declared in all these three modules. Future releases will fix this problem.

2. A string cannot be longer than 512 characters.

3. Arithmetic functions and repeated variables in the head of a DELAY declaration
may cause DELAY declarations to behave incorrectly in some rare cases.

4. In both the Integers and Rationals modules, if you use the power function
backwards to compute the root of a number, when the answer is greater than
10714, it is usually wrong. For instance,

[Integers] <- x"2 = 10728.
x = 100000000000000 ?

Yes

[Integers] <- x"2 = 10730.
No.

This is because there is no general algorithm for this class of problems and the
inaccurate logarithm function has to be used.

5. The Flock Compile command (;fc) cannot parse a single identifier unit written
as, e.g. “proposition.”. However, the command works if there is a layout

7

character in between the identifier and the terminator, i.e. “proposition .”.

6. No opaque terms are generated by the meta modules. This has little practi-
cal consequence, but means that it is sometimes possible to access the internal
structure of terms that should be hidden inside closed system modules. Pro-
grams that rely on this will cease to work once opaque terms are implemented
correctly.

7. The Succeed and Compute predicates in Programs can go wrong in certain very
obscure circumstances where the object program itself calls Succeed or Compute
on a different object program with the same name.

8. If you use SICStus Prolog 2.1 #6 (or earlier) to compile the Godel system, you
may be affected by a SICStus bug which causes a flounder message to be printed
out even when your program has terminated normally. This bug was fixed in
SICStus patch #7.

17

8 Acknowledgements

John Lloyd and Pat Hill are the originators of Godel. Constructive criticisms and
testing and debugging efforts were contributed by Dominic Binks, Corin Gurr, Feliks
Kluzniak, Nick Moffat and André de Waal. Corin Gurr implemented the Syntax
module and assisted with the implementation of other meta modules. We thank
Mats Carlsson and Stefan Andersson at SICS for their prompt and unfailing technical
support.

This work was partly supported by the ESPRIT Basic Research Action 3012 (Compu-
log) and Project 6810 (Compulog 2), SERC Grants GR/F /26256, and the University
of Bristol.

18

9 References

[Hill&Lloyd 92] P.M. Hill & J.W. Lloyd. The Gddel Programming Language, Bristol
University Technical Report CSTR-92-27, October 1992. Revised May 1993.

[Lloyd 87] J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, second
edition, 1987.

19

