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Preface

Would that I had unknown utterances and strange phrases,

In a new language that does not pass away,

Free from repetition,

Without a phrase of familiar speech which the ancestors spoke.

From The Words of Khakheperreseneb, around 1890 B.C.

Gödel is a declarative, general-purpose programming language in the family of logic program-
ming languages. It is a strongly typed language, the type system being based on many-sorted
logic with parametric polymorphism. It has a module system. Gödel supports infinite precision
integers, infinite precision rationals, and also floating-point numbers. It can solve constraints over
finite domains of integers and also linear rational constraints. It supports processing of finite sets.
It also has a flexible computation rule and a pruning operator which generalises the commit of the
concurrent logic programming languages. Considerable emphasis is placed on Gödel’s meta-logical
facilities which provide significant support for meta-programs that do analysis, transformation,
compilation, verification, debugging, and so on. The declarative nature of Gödel makes it par-
ticularly suitable for use as a teaching language; narrows the gap which currently exists between
theory and practice in logic programming; makes possible advanced software engineering tools
such as declarative debuggers and compiler generators; reduces the effort involved in providing a
parallel implementation of the language; and offers substantial scope for parallelization in such
implementations.

This book describes the Gödel language and is divided into two parts. The first part gives an
informal overview of the language and includes example programs. The second part contains a
definition of the syntax and semantics of the language. We assume readers have some program-
ming experience, have some acquaintance with logic programming concepts, and are familiar with
the most basic material on the syntax and semantics of first order logic. We provide an appendix
on polymorphic many-sorted logic for readers not familiar with this generalisation of (unsorted)
first order logic. At the end of the first chapter, we give, for those familiar with Prolog, a compari-
son between Gödel and Prolog. This provides much of the motivation for Gödel and explains why
various design decisions were taken. We suggest readers follow the first nine chapters in order,
looking ahead to the example programs in chapter 10 and referring to the formal definitions in the
second part, as appropriate. Augmented by the reference manual of a particular implementation,
the book contains everything a programmer needs to know to write large-scale Gödel programs.

Readers will notice that little is said about the procedural semantics of Gödel in this book.
This is a decision which probably requires some explanation, since one might expect a book which
gives a formal definition of a programming language to be rather precise on this point. First,
for the syntax and declarative semantics, we have tried to be precise and comprehensive. The
main criticism that could be made of our description of the declarative semantics is that the
specification of the system predicates is given in English rather than some formal language. Our
chosen method achieves conciseness, but at the expense of some lack of precision. In contrast,
for the procedural semantics, we have adopted a different approach and merely specified that the
implementation be sound and satisfy some other conditions. (For example, the conditions under
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which a DELAY declaration will delay a call are specified, as is the pruning effect of the commit
operator.)

The main advantage of specifying the procedural semantics in great detail is portability, so
that one could port a program from one implementation to another and be confident of identical
behaviour of the program in the two systems. In spite of this, we have decided not to follow
this approach. The reason is that logic programming language implementation is currently in
a state of rapid development, so that whatever precise procedural semantics we might specify
now is likely to look outdated and unnecessarily conservative in a couple of years. By leaving
the details of the procedural semantics so open, we hope to encourage, or at least not impede,
this development. This approach gives implementors of Gödel considerable freedom and, for
example, admits theorem proving methods which provide a more flexible handling of negation
than the usual SLDNF-resolution. However, the reference manual of an implementation will need
to discuss whatever further details on the procedural semantics are required to write (reasonably)
efficient programs.

The most likely difference between implementations of Gödel will be that programs terminat-
ing on one implementation may flounder on another. The two places where this is most likely to
happen are with constraint solving and the handling of negation. This is because a considerable
range of sophistication of constraint solvers for the integers and rationals is possible. Also, an
implementation employing safe negation may flounder on calls which would run on an imple-
mentation employing a more flexible implementation of negation. However, only completeness is
affected: all implementations must be sound.

It is hardly possible to design a new programming language without relying to a great extent on
previous work. Gödel is no exception to this. First, we owe an indirect debt to Alain Colmerauer
who designed the first Prolog language, many features of which are clearly evident in Gödel. We
have also borrowed good ideas from more recent logic programming languages. In particular, we
have adopted the if-then-else construct and the when declarations of NU-Prolog. Both of these
facilities are due to Lee Naish. We drew inspiration from languages, such as ML and Modula-2,
which demonstrate the clear necessity and value of type systems and module systems.

We owe a particular debt to Antony Bowers and Jiwei Wang, who have undertaken so success-
fully the substantial and demanding task of implementing the language. Corin Gurr helped with
the implementation of the meta-programming modules. Also his work on self-applicable partial
evaluators influenced the design of the language. Antony Bowers contributed to the design, es-
pecially of the meta-programming facilities, and introduced the concept of type lifting. Alistair
Burt, who spent 12 months on the project, produced the first implementation of a subset of the
language and also contributed to its design, especially the idea that the ground representation
used by the meta-programming facilities should be handled like an abstract data type. Andrea
Domenici contributed to an early implementation of the parser. Frank Defoort experimented at
a formative stage with writing interpreters using the ground representation.

Various people commented on drafts of this book. These include Antony Bowers, Frank
Defoort, Andrea Domenici, John Gallagher, Corin Gurr, Feliks Kluzniak, Micha Meier, Lee Naish,
Vitor Santos Costa, Jeffrey Schultz, Zoltan Somogyi, Rodney Topor, and Jiwei Wang.

The first author is indebted to the Division of Artificial Intelligence (and in particular Tony
Cohn) at the University of Leeds for encouraging her work on Gödel. The second author would
like to thank many people, too numerous to mention, for many interesting discussions over the
last decade, which have helped shape the form that Gödel has finally taken.
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We are also indebted to Dr. Richard Parkinson of the Department of Egyptian Antiquities
at the British Museum for the use of his translation of the above passage from the Words of
Khakheperreseneb, which is preserved on a wooden writing tablet dating from the 18th Dynasty
and is now in the British Museum (EA 5645). Khakheperreseneb is said to have been a priest of
the city of Heliopolis. His name indicates that the text cannot predate the reign of Sesostris II
(1895–1878 B.C.) in the Late Middle Kingdom.

The design and implementation of Gödel was partly supported by the ESPRIT Basic Re-
search Action 3012 (Compulog) and Project 6810 (Compulog 2), SERC Grants GR/F/26256 and
GR/H/79862, the University of Bristol, and the University of Leeds.

For details on obtaining an implementation of Gödel by ftp, send a message to
goedel@compsci.bristol.ac.uk

May 1993 PMH
JWL
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Chapter 1

Introduction

In this chapter, we introduce briefly the main ideas of declarative programming, outline the main
facilities of Gödel1, and give a comparison of Gödel and Prolog.

1.1 Declarative Programming

Before getting down to the details of the Gödel language, we present a brief discussion of the
general principles of declarative programming. The starting point for the programming process is
the particular problem that the programmer is trying to solve. The problem is then formalised as
an interpretation (called the intended interpretation) of a language which we assume here to be a
(polymorphic many-sorted) first order language. (See appendix A.) The intended interpretation
specifies the various domains and the meaning of the symbols of the language in these domains.
In practice, the intended interpretation is rarely written down precisely, although in principle this
should always be possible.

Now, of course, it is taken for granted here that it is possible to capture the intended applica-
tion by a first order interpretation. Not all applications can be (directly) modelled this way and
for such applications other languages and formalisms may have to be employed. However, a very
large class of applications can be modelled naturally by means of a first order interpretation. In
fact, this class is larger than is sometimes appreciated. For example, it might be thought that
such an approach cannot (directly) model situations where a knowledge base is changing over
time. Now it is true that the intended interpretation of the knowledge base is changing. How-
ever, the knowledge base should properly be regarded as data to various meta-programs, such
as query processors or assimilators. Thus the knowledge base can be accessed and changed by
these meta-programs. The meta-programs themselves have fixed intended interpretations which
fits well with the setting for declarative programming given above.

Based on the intended interpretation, the logic component of a program is then written. This
logic component is a particular kind of (polymorphic many-sorted) first order theory which is
usually suitably restricted so as to admit an efficient theorem proving procedure. It is crucial
that the intended interpretation be a model for the logic component of the program. This is
because computed answers, which must be guaranteed to be correct by the implementation,

1The name Gödel is appropriate since the key concept of the language’s approach to meta-programming is
representation (i.e. naming), which was introduced by Gödel in his incompleteness result. Alternatively, Gödel
can be regarded as an acronym formed from God’s Own DEclarative Language.

3



4 CHAPTER 1. INTRODUCTION

therefore give instantiated goals which are true in the intended interpretation. Ultimately, the
programmer is interested in computing truth in the intended interpretation.

Typically, in logic programming languages, the logic component of a program is the theory
obtained by completing the collection of program statements, that is, by adding to the program
the only-if halves of the statements in the program. (See appendix A.) In other approaches to
declarative programming, different logics are used. For example, in functional programming, the
logic component of a program can be understood to be a collection of formulas in the λ-calculus.
However, while the logic used is different to that in logic programming, the underlying ideas of
declarative programming from the functional programming perspective are the same.

Having written a correct logic component of a program, the programmer then turns to the
control component of the program, which is concerned with the construction and pruning of
search trees. Typically, the computation rule (which selects a literal in a goal for expansion) is
partly specified by control declarations and the pruning of a search tree is specified by pruning
operators. To some extent, it is possible to relieve the programmer of responsibility for the control
aspects by the use of preprocessors which automatically generate appropriate control. Note that,
in practice, control considerations may cause a programmer to go back and rewrite the logic
component to improve the efficiency of a program. In any case, an important requirement of the
control declarations and pruning operators of a program is that they can be stripped away and
what remains is a correct logic component of the program.

Declarative programming can be understood in two main senses. In the weak sense, declarative
programming means that programs are theories, but that a programmer may have to supply
control information to produce an efficient program. Declarative programming, in the strong
sense, means that programs are theories and all control information is supplied automatically by
the system. In other words, for declarative programming in the strong sense, the programmer
only has to provide the intended interpretation (or, perhaps, a theory which has the intended
interpretation as a model). This is to some extent an ideal which is probably not attainable
(nor, in some cases, totally desirable), but it does at least provide a challenging and appropriate
target. Gödel itself is a contribution to declarative programming in the weak sense. Thus Gödel
programs are (with some minor caveats) theories, but programmers are largely responsible for
providing suitable control information.

In summary, declarative programming is much more concerned with writing down what should
be computed and much less with how it should be computed. Ideally, in many circumstances, we
would like to be able to dispense altogether with having to write down the “how” part (that is, the
control part), but the current state of programming technology, including Gödel, does not permit
this. Nevertheless, declarative programming in the strong sense would be a major contribution to
programming if it could be substantially achieved and fully justifies the considerable effort which
continues to be put into this challenge by research groups all over the world.

1.2 Gödel Facilities

Gödel is a declarative, general-purpose programming language in the family of logic programming
languages. Its main facilities are as follows:

• types

• modules
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• control

– control declarations

– constraint solving

– pruning operator

• meta-programming

• input/output

We now introduce each of these facilities in turn.
First we consider types. The reasons for having types in logic programming languages are

well known. The major reason is for knowledge representation. Intended interpretations in most
logic programming applications are typed and hence using a typed language is the most direct
way of capturing the relevant knowledge in the application. Also, the information given by the
language declarations of a type system can be used by a compiler to produce more efficient code.
Furthermore, type declarations can help to catch programming errors. For example, in an untyped
language, simple typographical errors often lead to bizarre program behaviour which can usually
only be identified by laborious tracing of the program. In contrast, in a typed language, such
errors often lead to syntax errors which can be caught by the compiler. It is nearly always easier
to correct an error caught by the compiler than it is to discover and correct an error that leads to
wrong program behaviour. Our experience with the Gödel type system supports the contention
that it greatly decreases the effort required for program development and greatly increases the
likelihood of correctness of programs compared with untyped languages.

There are two kinds of type systems studied in logic. The first kind are type systems suitable
for higher order logics (for example, the type system of typed λ-calculus). These provide the
foundation for the type systems of functional languages and higher order logic programming
languages. The other kind of type system studied in logic arises from many-sorted (first order)
logic. It is many-sorted logic which provides the foundation for type facilities in first order logic
programming languages and it is an extension of this logic that is used by Gödel. In the following,
to conform to the usual terminology of programming languages, we often refer to a sort as a type.

However, a many-sorted logic alone is not sufficiently flexible for a type system in a logic
programming language. The reason is that we want to write predicates which take a variety of
types of arguments. For example, the usual Append predicate will normally be required to append
lists each of whose elements has the same fixed but arbitrary type. For this reason, Gödel allows
a form of polymorphism, called parametric polymorphism, familiar from functional programming
languages. Parametric polymorphism necessitates the introduction of type variables, which range
over all types. By this means, a polymorphic version of Append, for example, can be written in a
similar way to the functional languages.

Gödel’s type system is a strongly typed one, in the sense that each constant, function, propo-
sition, and predicate in a program and its type must be specified by a language declaration. By
contrast, variables have their types inferred from their context.

Next we briefly discuss Gödel’s module system. The usual software engineering advantages of
a module system are well known and they apply equally well to Gödel. In its most basic form,
a module system simply provides a way of writing large programs so that various pieces of the
program don’t interfere with one another because of name clashes and also provides a way of
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hiding implementation details. The Gödel module system is based on these standard ideas. A
program is a collection of modules. A module generally consists of two parts, the export part
and the local part. The export part of a module consists of language declarations for the symbols
available for use in either part of the module and in other modules which import them, control
declarations, and module declarations giving the symbols from other modules which are available
for use in either part of the module and in other modules which import them. The local part
of a module consists of language declarations for the symbols available for use only in this part,
module declarations giving the symbols from other modules available for use in this part, control
declarations, and definitions of those propositions and predicates having language declarations in
the module.

There is a rich collection of system modules – 20 in all – provided by the Gödel language. These
include modules which process numbers, modules which process lists, strings, and sets, modules
which provide input/output, and modules which provide meta-programming facilities. Gödel also
makes significant use of abstract data types, which are implemented by means of the module and
type systems. An abstract data type consists of a type and a collection of operations on the type.
The details of the way the type is represented and the way the operations are implemented are
hidden from programmers. Abstract data types have many advantages for software engineering,
including the provision of a higher level of abstraction for programmers and the ability to change
the implementation of a type without affecting existing code. The Gödel system modules provide a
number of important abstract data types, including String (the type of strings), Unit (the type of
term-like data structures), Program (the type of terms representing Gödel programs), and Theory

(the type of terms representing many-sorted first order theories). In each case, the corresponding
module provides a collection of operations on the type and the module system is used to hide
the implementation details of these operations. Furthermore, a number of other Gödel system
modules provide types which are at least partly abstract. For example, the implementation of
the operations on the types Integer and Rational are hidden from programmers. However, for
pragmatic reasons, it is preferable to make explicit the symbols used to represent these types. For
example, the constants representing the integers are made available to programmers. It would
be possible to avoid this by having a predicate which returned the integer 0 and a predicate
which returned the successor of an integer, but this is much more cumbersome for programmers
than simply making the constants available. In any case, a good way to think about the Gödel
language is that essentially it provides a rich collection of (mostly abstract) data types, useful
for a variety of applications, and provides facilities for programmers to define their own abstract
data types.

Next we discuss Gödel’s control facilities. Gödel has a flexible computation rule, which may
select a literal other than the leftmost literal. The advantages of a flexible computation rule
are that it can be used to ensure safeness (especially of negative calls), assist termination, as-
sist efficiency, solve constraints, and control pruning. The computation rule is partly specified
by means of DELAY control declarations, which cause certain calls to be delayed until they are
sufficiently instantiated. Many Gödel system predicates have DELAY declarations. Furthermore,
a programmer can encourage co-routining behaviour by means of these declarations.

Gödel has constraint-solving capabilities in the domains of integers and rationals. It can solve
systems of (not necessarily linear) constraints which involve integers, variables which range over
bounded intervals of integers, and the usual functions and predicates with integer arguments. It
can also solve systems of linear rational constraints involving rationals, variables ranging over the
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rationals, and the usual functions and predicates with rational arguments.
We now discuss another control facility, which is the Gödel pruning operator called the commit.

Consider the definition

P <- {Q}_1 & R & T.

P <- {S}_1 & T.

P <- {U}_2 & V.

in which P, Q, and so on, are propositions. The commit notation has the form {...}_l, where l is
a label (which is a positive integer). The brackets {...} capture the scope of the commit inside
a statement. The label captures the scope of the commit over the statements in the definition.
When a conjunction {L1 & ... & Ln}_l succeeds, all other statements in the definition which
contain a commit labelled l are pruned. The other pruning that takes place is that only one
solution is found for L1 & ... & Ln. Thus, if P is called and then Q subsequently succeeds, the
second statement (but not the third) will be pruned and only one solution for Q will be found.
Two special cases of the commit are provided. These are the bar commit, which is similar to
the commit of the concurrent languages, and the one solution operator. In fact, programmers
generally have no need for the general commit and can do all the explicit pruning they want to
do with the bar commit and one solution operator. The general commit is primarily meant for
source-level tools, such as partial evaluators and program transformers. Furthermore, commits
are rarely necessary in Gödel programs, since they can often be replaced by declarative constructs,
such as negation and if-then-else.

The commit operator provides a powerful tool for pruning away unwanted branches of search
trees, but it can affect the declarative semantics of programs in the sense that correct answers
can be pruned. Therefore, it detracts from the major aim of Gödel, which is to have programs
with the best possible declarative semantics. However, as was argued in detail in [12], (sound)
pruning operators do have an important place in logic programming languages, even though
they may adversely affect the semantics of programs in which they appear. Furthermore, in
Gödel, it is always possible to strip away all commits from a program to reveal its underlying
logic component. In addition, the Gödel commit is sound and has been shown to have excellent
procedural semantics. For example, a theorem in [12] shows that commit is well-behaved under
partial evaluation in the sense that, under reasonable conditions, the original program can be
arranged to have the same set of computed answers as the partially evaluated program.

For an arbitrary computation rule, the pruning done by the commit, while correct according
to its definition, may be very difficult for a programmer to understand and control. For example,
if an insufficiently instantiated call is allowed to proceed, the system may commit to a statement
which is not intended and, as a consequence, the computation may later fail. Thus an important
use of DELAY declarations is to control pruning. Appropriate DELAY declarations ensure calls only
proceed if they are sufficiently instantiated, thus avoiding unexpected failure and, more generally,
giving the programmer sufficient control over what is pruned.

The other control facility provided by Gödel is the IF-THEN-ELSE construct, which has sev-
eral variations. This construct has a declarative meaning, but also provides important control
information in that it ensures the condition in the IF part is only computed once. This can
result in an important saving if this condition is computationally expensive. One variation omits
the ELSE part and another allows existentially quantified variables to appear in the IF and THEN
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parts. As the reader will see from the programs in this book, the IF-THEN-ELSE construct figures
prominently in the Gödel programming style.

Next we turn to Gödel’s meta-programming facilities. The essential characteristic of meta-
programming is that a meta-program is a program which uses another program (the object
program) as data. Meta-programming techniques underlie many of the applications of logic
programming. For example, knowledge base systems consist of a number of knowledge bases (the
object programs), which are manipulated by interpreters and assimilators (the meta-programs).
Other important kinds of software, such as debuggers, compilers, and program transformers, are
meta-programs.

The Gödel approach to meta-programming is to exploit abstract data types. One of the main
such types is Program which is the type of a term representing an object Gödel program. Terms
of type Program are complicated terms which contain a representation of all the components of
a Gödel program. So, for example, the module structure must be represented, as must all the
language declarations and statements appearing in the program. The system module Programs

provides a large number of operations on this abstract data type, including adding and deleting
statements in a program, accessing language declarations, running goals to a program, and many
others. There are two other major abstract data types for meta-programming. One is Theory

which is the type of a term representing an object many-sorted theory. The system module
Theories provides operations on this abstract data type which can be used to implement the-
orem provers, for example. The other type is Script which is the type of a term representing
an object Gödel script. A script is similar to a program except there is no module structure.
Scripts are particularly useful as the target for partial evaluators. The system module Scripts

provides operations on the type Script. This approach to meta-programming is declarative –
all the predicates providing the operations on the various abstract data types can be understood
declaratively. This, combined with the fact that a large number of useful operations are provided
by these modules, means that Gödel provides a congenial environment for meta-programming.

Finally, we briefly discuss input/output. Unfortunately, at the interface between a program
and the external world, the declarative semantics of a program can be severely compromised.
To try to ameliorate such difficulties, we recommend that programmers exploit Gödel’s module
system. The idea is to have all the modules which use input/output predicates as high as possible
in the module hierarchy. This means that modules not above or equal to these input/output
modules will not make any calls to input/output predicates. Thus they will contain pure code
together possibly with commits. In other words, it will actually be modules not above or equal
to the input/output modules of a Gödel program which will have the significantly improved
declarative semantics.

In summary, there are precisely two facilities, input/output and pruning, which adversely
affect the declarative semantics of Gödel programs. Input/output introduces side-effects via read
predicates. However, as was pointed out above, this problem can be ameliorated by appropriate
use of the module system. Commit affects the declarative semantics because it can cause correct
answers to be pruned. Fortunately, Gödel programs generally need few uses of pruning. Except
where use is made of either of these two facilities, Gödel programs are declarative.

The declarative nature of Gödel programs provides a number of important advantages. First,
Gödel is eminently suited as a teaching language partly because students can concentrate much
more on writing down what it is they want to compute without being so concerned about how to
compute it. Second, Gödel narrows the gap between theory and practice in logic programming.
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At the moment, most practical logic programming languages rely on a significant number of
non-logical features for which there is no useful semantics. By greatly reducing its reliance on
non-logical features, Gödel thus provides a solid bridge between theory and practice. Third, the
fact that Gödel meta-programs are declarative makes some desirable applications possible. One
of these is to build a compiler-generator by partial evaluating a (self-applicable) partial evaluator
with respect to itself as input. Another such application is the use of a declarative debugger to
debug Gödel programs. Declarative debugging is an attractive debugging technique which only
requires that the programmer know the intended interpretation of a program to locate certain
bugs. In particular, knowledge of the procedural behaviour of the Gödel system is not needed.
Fourth, Gödel more easily allows a parallel implementation since there are only a couple of non-
logical features to complicate matters. Finally, because the language has so few features (namely,
input/output and pruning) which have side-effects or have global effects on a search tree, there
is very little to unnecessarily impede the exploitation of parallelism in programs.

1.3 Comparison with Prolog

In this section, we make a detailed comparison between Prolog and Gödel. This comparison
provides much of the motivation for why various design decisions for Gödel were made. In
particular, we examine those Prolog features which are non-logical, since these are the ones that
need most attention. We begin by discussing some general requirements for any programming
language.

Five desirable properties of any programming language are that it be

• high level,

• expressive,

• efficient,

• practical, and have a

• simple (mathematical) semantics.

A high level language is one which provides concepts as close as possible to those which people like
to use to express their thoughts and ideas. An expressive language is one which provides concepts
that can be used to model real-world situations easily and concisely. An efficient language is one
for which typical programs run at speeds and memory costs similar to competing languages. A
practical language is one that can be used for large-scale, real-world applications. A language
with a simple semantics is one for which programmers can easily verify and debug their programs
and be assured of the correctness of program transformations, optimisations, and so on.

Prolog has proved to be a great success in a wide variety of application areas. This success is
undoubtedly due to the fact that Prolog is high level, expressive, efficient, and practical. Prolog’s
importance and widespread use is well justified by these properties. However, Prolog’s semantics
(and by Prolog, we mean the practical programming language as it is embodied in currently
available Prolog systems, not the idealised pure subsets studied in [15], for example) is much less
satisfactory. The problems with the semantics are numerous and well known: the lack of occur
check, the use of unsafe negation, the use of non-logical predicates, such as var, nonvar, assert,
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and retract, the undisciplined use of cut, and so on. These problematical aspects of Prolog cause
many practical Prolog programs to have no declarative semantics at all and to have unnecessarily
complicated procedural semantics. This means that the analysis, transformation, optimisation,
verification, and debugging of many Prolog programs is extremely difficult.

The solution to these problems is to take more seriously the central thesis of logic programming,
which is that

• a program is a (first order) theory, and

• computation is deduction from the theory.

It is crucially important that programs can be understood directly as theories. When this is the
case, they have simple declarative semantics and can be much more easily verified, transformed,
debugged, and so on. Each of the problematical aspects mentioned above causes difficulties
precisely because it creates an impediment to the understanding of a program as a theory. A
Prolog program which cannot be understood in some simple way as a theory has only a procedural
semantics. This leaves us in no better position to understand the program than if it was written
in a conventional procedural language.

Gödel directly addresses these semantic problems of Prolog. The main design aim of Gödel is to
have functionality and expressiveness similar to Prolog, but to have greatly improved declarative
semantics compared with Prolog. Gödel is intended to have the same relation to Prolog as
Pascal does to Fortran. Fortran was one of the earliest high-level languages and suffered from
a lack of understanding at that time of what were good programming language features. In
particular, it had a meagre set of data types and relied on the goto for control. Pascal, which
was introduced 10 years later, benefitted greatly from a considerable amount of research into
programming language design. In particular, Pascal had a rich set of data types and relied on
structured control facilities instead of the goto. Similarly, Prolog was designed at the birth of logic
programming before researchers had a clear understanding of how best to handle many facilities.
Consequently, these facilities compromised its declarative semantics. In the period since Prolog
first appeared, various research projects have shown how to design logic programming languages
with better software engineering facilities and greatly improved declarative semantics with all the
well-known advantages that these bring. Our aim has been to exploit this research in the design
of Gödel.

Now we turn to some problematical features of Prolog. To begin with, we discuss Prolog’s
approach to meta-programming, which is one of its most unsatisfactory aspects. Unfortunately,
Prolog does not make a clear distinction between the object level and meta-level, and does not
provide explicit language facilities for representation of object level expressions at the meta-level.
Thus important representation (that is, naming) and semantic issues are glossed over. As we show
below, Prolog’s meta-programming problems can be traced to the fact that it doesn’t handle the
representation requirements properly. A consequence of this is that it is not possible to (directly)
understand most Prolog meta-programs as theories and hence they do not have a declarative
semantics. The most obvious symptom of this is with var, which has no declarative semantics at
all in Prolog. However, within the framework of the appropriate representation, a meta-program
is a first order theory and the meta-logical predicates of Prolog, such as var, nonvar, assert,
and retract, have declarative counterparts.
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We now point out precisely where Prolog’s meta-programming problems lie. The first problem
is illustrated by one of the best known meta-programs, the standard solve interpreter. This
interpreter consists of the following definition for solve.

solve(empty).

solve(x and y) <- solve(x) & solve(y).

solve(x) <- clause(x,y) & solve(y).

together with a definition for clause, which is used to represent the object program. For example,
if the object program contains the clause

p(x,y) <- q(x,z) & r(z,y).

then there is a corresponding clause of the form

clause(p(x,y), q(x,z) and r(z,y)).

appearing in the definition of clause.
However, the declarative meaning of the solve interpreter is by no means clear. The problem

is that the variables in the definition of clause and the variables in the definition of solve
intuitively range over different domains [10]. Thus the intended interpretation is simply not a
model of the program. What is at stake here is whether it is possible to give a simple and precise
semantics to the solve interpreter and other meta-programs. Without such a semantics, it is
impossible, for example, to verify them or prove the correctness of transformations performed on
them.

If the different kinds of variables are intended to range over different domains, then there
is a clear solution. We should introduce types into the language underlying the meta-program.
The key aspect of the appropriate representation is that an object level variable is represented
by a meta-level variable. This representation is called the non-ground representation. Then, for
example, using an appropriately typed version of the solve interpreter, it is possible to prove its
soundness and completeness for both the declarative and procedural semantics [10].

However, Prolog has another problem related to the fact that an object level variable is
(implicitly) represented by a meta-level variable. This leads to severe semantic problems with
var, for example. With this representation, there seems to be no way of giving a declarative
semantics to var. To see the difficulty, consider the goals

<- var(x) & solve(p(x)).

and

<- solve(p(x)) & var(x).

If the object program consists solely of the clause p(a), then (using the “leftmost literal” com-
putation rule) the first goal succeeds, while the second goal fails.

These considerations lead to another representation, called the ground representation, in which
object level expressions are represented by ground terms at the meta-level. In particular, in the
ground representation, an object level variable is represented by a ground meta-level term. The
ground representation is a standard tool in mathematical logic. Using this representation, it
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is possible to give appropriate definitions for declarative counterparts of the static meta-logical
predicates of Prolog, such as var and nonvar.

We remark that it is possible to identify two different uses of var in Prolog. The first is
the “meta-logical” use which can be understood as above. This use of var is exemplified by
the unification algorithm given on page 152 of [19]. The other use is the “control” use, which
is exemplified by the program for grandparent given on page 148 of [19]. In Gödel, the meta-
logical use of var is covered by a declarative replacement for it. Most of the control uses of var
are covered by a flexible computation rule.

Meta-programs are often required to manipulate the representations of object programs, cre-
ating new object program representations dynamically. For example, a partial evaluator and a
program transformer both do this. To do this declaratively, we need one further idea, which
is that object programs should be represented not as meta-programs, but instead as meta-level
terms [3]. Using this idea together with the ground representation, it is straightforward to set up
the abstract data types used in the Gödel approach to meta-programming and to give appropriate
definitions for declarative counterparts of the dynamic meta-logical predicates of Prolog, such as
assert and retract [11].

We remark that the ground representation is easily the more important of the two represen-
tations. In fact, the non-ground representation seems useful mostly for the solve interpreter and
various extensions of it. As soon as, for example, we want to do any significant manipulation of
meta-level terms representing object level expressions, we must use the ground representation.
This means that most of the important uses of meta-programming, such as compiling, transform-
ing, partially evaluating, and debugging, will require the ground representation. Gödel does not
provide any special support (other than the type system) for the non-ground representation. This
means that, while it is straightforward to write in Gödel a solve interpreter and extensions of it
in a similar way to Prolog, the non-ground representation of the object program must be given
explicitly by the programmer. On the other hand, Gödel provides considerable support for the
ground representation for the reasons given above.

Representing object level variables by ground meta-level terms means that we can no longer
make direct use of the underlying unification of the system. In principle, much low-level com-
putation, which is normally done directly and efficiently by the system, must now be done less
efficiently by explicit Gödel code. However, there is a major implementation advantage in making
programs more declarative, which is that more declarative programs are more easily parallelised.
In fact, we conjecture that the cost of implementing the ground representation will be more than
repaid by the greater degree of parallelism available on the coming generation of parallel ma-
chines. In other words, we conjecture that ultimately Gödel meta-programs will run faster than
corresponding Prolog meta-programs!

Next we turn to pruning. Prolog uses the cut as its pruning operator. However, cut has a
number of semantic problems, which were discussed in detail in [12]. The first of these problems
is that cut, at least as it is employed in existing Prolog systems, allows considerable uncertainty
about what the underlying logic component of the program is. This is because programmers
can exploit the sequential nature of cut to leave “tests” out and when this is done the logic
component of the program cannot be obtained by simply removing all the cuts from the program.
Furthermore, there is no convention for systematically putting back the omitted tests so as to
define the logic component precisely. The second problem with cut is that its use, in the presence
of negation, can be unsound, in the sense that a computed answer may not be correct with respect
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to the completion of the logic component of the program. The third problem is that the class of
programs containing cut is not closed under program transformations.

For these reasons and because the commit of the concurrent logic programming languages [18]
has better semantics, Gödel’s pruning operator, also called commit, is based on the commit of
the concurrent languages. In fact, the simplest form of the commit (denoted | and called bar
commit) is similar to the commit of the concurrent languages. Consider the following definition of
the proposition P, in which we write | as a connective with the declarative meaning of conjunction.

P <- Q | R.

P <- S | T.

P <- U | V.

The order in which the statements are tried is not specified, so that bar commit does not have
the sequentiality property of cut. The informal procedural meaning of bar commit is that it finds
only one solution for the successful guard (that is, the conjunction of literals in a body to the left
of a commit) and prunes all other statements in the definition which contain a commit.

We now investigate the extent to which | supports program transformations. Consider the
following program.

P <- M & L.

P <- N.

M <- Q | R.

M <- S | T.

N <- U | V.

How can we unfold on M and N in the definition for P? A first attempt might be the following
definition for P.

P <- Q | R & L.

P <- S | T & L.

P <- U | V.

However, this is not correct as the | notation is unable to distinguish the scopes of the commits
in the first two statements from the scope of the commit in the third statement. This difficulty
leads us to introduce a more flexible notation than |. This notation has the form {...}_l, where
l is a label (which is a positive integer). In this notation, the previous program would be written
as follows.

P <- M & L.

P <- N.

M <- {Q}_1 & R.

M <- {S}_1 & T.

N <- {U}_1 & V.

The brackets {...} capture the scope of the commit inside a statement. By convention, for
| this scope is the conjunction of literals to its left. The label captures the scope of the commit
over the statements in the definition. When a conjunction {L1 & ... & Ln}_l succeeds, all other
statements in the definition which contain a commit labelled l are pruned. The other pruning
that takes place is that only one solution is found for L1 & ... & Ln. Now when we unfold on
M and N in the definition for P, we obtain the following definition
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P <- {Q}_1 & R & L.

P <- {S}_1 & T & L.

P <- {U}_2 & V.

in which the label in the commit in the definition for N has been standardised apart to avoid an
unwanted coincidence with the label of the commits in the definition for M. Note that we have
now correctly distinguished the scopes of the commits.

The notation for the commit is very flexible. For example, we could have the following
definition for P.

P <- {Q & {R}_2}_1.

P <- {S & {W}_2}_1 & T.

P <- {U & V}.

P <- W & V.

This definition illustrates that a single statement can contain several commits and that commits
can be nested. Note also that the commit {...} in the third statement has no label. This is
syntactic sugar for a commit with a label different from all other commit labels in the defini-
tion. This commit is a one-solution operator. Thus the commit operator contains a one-solution
operator as a special case. We envisage programmers writing almost all their programs with
just the two important special cases of the commit – the | and the one-solution operator {...}.
However, source-level tools, such as partial evaluators and program transformers, will require the
flexibility of the commit, since definitions as complex as the previous one can easily be obtained
from definitions using the | notation after just a few unfolding steps.

Other problematical aspects of Prolog can be repaired comparatively easily. For example,
Gödel requires a sound implementation of negation instead of Prolog’s unsound version. A sound
implementation of negation is not expensive or difficult to implement. Related to this, Gödel
adopts the declarative and flexible if-then-else construct of NU-Prolog [20]. Also Gödel (at least
in principle) does the occur check during unification. However, the occur check is generally very
expensive and so it is important for an implementation to avoid occur checks whenever possible.
Fortunately, in practice the occur check very rarely causes the unification algorithm to fail, so
there is considerable scope for reducing the occur check overhead by determining through program
analysis the few places where the occur check may be needed. In this way, an implementation
can be both sound and efficient.

Many extensions and variations of Prolog have been introduced and studied by the logic
programming community over the last 15 years. These include concurrent languages, constraint
languages, and higher order languages. Unfortunately, these languages have been essentially built
on top of Prolog and therefore inherit many of Prolog’s semantic problems. For example, most
of these languages use Prolog’s approach to meta-programming. We hope that the designers of
future logic programming languages will see from Gödel that it really is possible to design and
implement a logic programming language which is both practical and declarative.



Chapter 2

Types

In this chapter, we discuss the Gödel type system, giving details of the various kinds of language
declarations which are used to define the polymorphic many-sorted languages in which programs
are written.

2.1 Many-Sortedness

The main purpose of this chapter is to explain the Gödel type system. However, since a program
consists of a collection of modules, to do that it is convenient to introduce here the simplest form
of module. Modules are explained in detail in chapter 5.

A module consists of module declarations, language declarations, control declarations, and
statements. Module declarations name modules and declare which symbols of the language are
imported and exported. Language declarations define a polymorphic many-sorted language. Con-
trol declarations constrain the computation rule. Statements are the formulas in the language
which define the propositions and predicates. To begin with, we only require the module decla-
ration which consists of the keyword MODULE followed by the name of the module. For example,
the following module has name M1.

Now let us turn to the Gödel type system, which is based on many-sorted logic with parametric
polymorphism. (See appendix A.) We first discuss the many-sorted aspect of the type system.
Consider module M1 below which defines the predicates Append and Append3 for appending lists
of days of the week. Note that variables are denoted by identifiers beginning with a lower case
letter and constants by identifiers beginning with an upper case letter.

In general, language declarations begin with the keywords BASE, CONSTRUCTOR, CONSTANT,
FUNCTION, PROPOSITION, or PREDICATE. These declarations declare the symbols of the language,
which belong in one of the categories : base, constructor, constant, function, proposition, or
predicate. In module M1, the language declaration beginning with the keyword BASE gives the
types of the many-sorted language of the module. It declares Day and ListOfDay to be bases,
which are the only types of the language. (More complicated types will be introduced shortly.)
The next three declarations declare the constants, functions, and predicates of the language.
The first part of the CONSTANT declaration declares Nil to be a constant of type ListOfDay.
The second part declares Monday, Tuesday, etc., to be constants of type Day. The FUNCTION

declaration declares Cons to be a binary function which maps a tuple of arguments, where the
first argument is of type Day and the second argument is of type ListOfDay, to an element of

15
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MODULE M1.

BASE Day, ListOfDay.

CONSTANT Nil : ListOfDay;

Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday :

Day.

FUNCTION Cons : Day * ListOfDay -> ListOfDay.

PREDICATE Append : ListOfDay * ListOfDay * ListOfDay;

Append3 : ListOfDay * ListOfDay * ListOfDay * ListOfDay.

Append(Nil,x,x).

Append(Cons(u,x),y,Cons(u,z)) <-

Append(x,y,z).

Append3(x,y,z,u) <-

Append(x,y,w) &

Append(w,z,u).

type ListOfDay. The PREDICATE declaration declares Append to be a ternary predicate each of
whose arguments has type ListOfDay. It also declares Append3 to be a quaternary predicate
each of whose arguments has type ListOfDay. Statements and goals are written in the language
defined by the language declarations. A proposition is declared with a PROPOSITION declaration.
So, for example, a module may contain the declaration

PROPOSITION P,Q.

which declares P and Q to be propositions.
In general, the identifier immediately after the keyword of a language declaration is called

the name of the symbol being declared. Until the last section of this chapter, distinct symbols
declared in the same module have distinct names. Thus, until then, in the context of a single
module, a symbol can be uniquely identified by its name and we are free, as we have already
done in the previous paragraph, to refer to a symbol via its name. Later we will introduce a
more flexible mechanism which allows overloading, that is, the use of the same name for distinct
symbols.

Module M1 forms a complete program on its own. Typical goals for this program could be as
follows.

<- Append3(Cons(Monday,Nil), Cons(Tuesday,Nil), Cons(Wednesday,Nil), x).

<- Append3(x, y, z, Cons(Monday,Cons(Tuesday,Cons(Wednesday,Nil)))).

Note that every type of the language must be declared. Also every constant, function, propo-
sition, and predicate of the language must be declared. The types of variables are not declared,
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but are assigned using their position in statements and the language declarations given. Needless
to say, a variable must be used consistently within a single statement. That is, each occurrence of
the variable must have the same (assigned) type. However, there is no requirement that a variable
have a consistent type when used in different statements. That is, a variable x, say, could have
one type in one statement and another type in another statement. This notational flexibility is
very convenient in a programming language. By a suitable renaming of variables, if necessary,
it is straightforward to map a program employing this licence with variables to a many-sorted
theory with the stricter variable restrictions of many-sorted logic.

Next we introduce constructors using module M2, which is a variation of module M1. The
main difference between the two modules is that in module M2 a unary constructor List has been
declared. From the base Day and the constructor List, the set of all types of the language is
obtained by forming all “ground terms” from the “constant” Day and the “function” List. Thus
the types of the language are Day, List(Day), List(List(Day)), . . . . Note that a constructor
itself is not a type.

MODULE M2.

BASE Day.

CONSTRUCTOR List/1.

CONSTANT Nil : List(Day);

Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday :

Day.

FUNCTION Cons : Day * List(Day) -> List(Day).

PREDICATE Append : List(Day) * List(Day) * List(Day);

Append3 : List(Day) * List(Day) * List(Day) * List(Day).

Append(Nil,x,x).

Append(Cons(u,x),y,Cons(u,z)) <-

Append(x,y,z).

Append3(x,y,z,u) <-

Append(x,y,w) &

Append(w,z,u).

All bases and constructors of the language must be declared. If there is no constructor, then
the set of all types is just the set of all bases. If at least one constructor is declared, then the set
of all types is obtained by applying the above construction using the bases as “constants” and the
constructors as “functions” of the appropriate arity. For example, if a base Person were declared
in addition to those bases declared in module M2, then the set of all types would be Day, Person,
List(Day), List(Person), List(List(Day)), List(List(Person)), . . . .

In mathematical treatments of many-sorted logic, there is no need for the types (i.e. sorts) to
have any structure. They are usually considered to be simply (unstructured) elements of the set
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of types. In contrast, for programming languages, for notational reasons it is very convenient for
types to have structured names as Gödel does.

Note also that once there is at least one constructor and one base declared, the set of types is
(countably) infinite. In some cases, this may mean that the language contains more types than
the programmer really wants. For example, in module M2, the only types of interest are Day and
List(Day). It would be possible to have a more flexible way of specifying types so that, in the
case that a programmer wanted only some subset of the types given by the above construction,
this could be achieved. For example, a more flexible notation for language declarations could
allow a programmer to have only the types Day and List(Day) in the language. In most cases,
it is not worth the extra complication in the language declarations needed to achieve this since
no great harm is done in assuming that the intended interpretation is augmented with the extra
types.

Type assignment for variables is handled as follows. For each statement in a module, there
must be an assignment of a type to each variable and its corresponding (possibly implicit) quanti-
fier in the statement so that the statement is a many-sorted formula. If there is such an assignment
of types, then it is unique. For example, for module M2, the variable x in the first statement is
assigned the type List(Day). In the second statement, the variable u is assigned the type Day,
and the variables x, y, and z are assigned the type List(Day). So the collection of declarations
and statements of module M2 together do constitute a module.

However, the declarations

BASE Day, Person.

PREDICATE P : Day * Person.

and the statement

P(x,x).

(together with a MODULE declaration) do not constitute a module, since there is no type which
can be assigned to x to satisfy the declaration for P.

2.2 Polymorphism

Next we introduce the second aspect of the type system, which is parametric polymorphism. (See
appendix A.) It is common for a programmer to want to write a definition of a predicate for which
the arguments of the predicate can have a variety of types. For example, the Append predicate
is normally written so that it can append lists of any type. For this purpose, we add parametric
polymorphism to the type system, as illustrated by module M3.

The logic on which module M3 is based is called polymorphic many-sorted logic. In module
M3, a is a parameter, which is a type variable. A parameter can be instantiated to any type of
the language of the logic. Like variables, parameters are not declared. For a polymorphic many-
sorted language, we need to extend the concept of a type. For such a language, a type is a “term”
constructed using the bases as “constants”, the parameters as “variables”, and the constructors
as “functions”. Thus, for module M3, the following are types: a, List(a), and List(List(Day)).
A ground type (also called a monotype) is a type not containing parameters. Thus the ground
types for module M3 are Day, Person, List(Day), List(Person), List(List(Day)), . . . .
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MODULE M3.

BASE Day, Person.

CONSTRUCTOR List/1.

CONSTANT Nil : List(a);

Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday :

Day;

Fred, Bill, Mary : Person.

FUNCTION Cons : a * List(a) -> List(a).

PREDICATE Append : List(a) * List(a) * List(a);

Append3 : List(a) * List(a) * List(a) * List(a).

Append(Nil,x,x).

Append(Cons(u,x),y,Cons(u,z)) <-

Append(x,y,z).

Append3(x,y,z,u) <-

Append(x,y,w) &

Append(w,z,u).

A symbol is polymorphic if its declaration contains a parameter; otherwise, it is monomorphic.
A polymorphic symbol can be understood as representing a collection of (monomorphic) symbols.
For example, the CONSTANT declaration for the polymorphic constant Nil in module M3 declares a
countably infinite set of (monomorphic) constants of type List(τ), where τ ranges over all ground
types. It is helpful to imagine the distinct constants in this collection as being subscripted by
the corresponding value for τ . Thus the (monomorphic) constants declared by the declaration
for Nil are NilDay of type List(Day), NilPerson of type List(Person), NilList(Day) of type
List(List(Day)), and so on. There is a similar understanding of polymorphic functions and
predicates.

The definition of a formula in a polymorphic many-sorted language is given in appendix A. It
is decidable whether an expression is a formula or not. A polymorphic formula can be understood
as representing a collection of (monomorphic) formulas. For example, consider module M3. During
checks that the statements in M3 are actually formulas, the variable u in the second statement for
Append has the type a assigned, and the variables x, y, and z have the type List(a) assigned.
Thus the second statement for Append represents the following collection of formulas:
AppendDay(ConsDay(u,x),y,ConsDay(u,z)) <- AppendDay(x,y,z),
AppendPerson(ConsPerson(u,x),y,ConsPerson(u,z)) <- AppendPerson(x,y,z),
AppendList(Day)(ConsList(Day)(u,x),y,ConsList(Day)(u,z)) <- AppendList(Day)(x,y,z),
and so on.

As another example, consider the module ParametricTypes below. The variable x has type a
in the atom Q(x) and has type M in the atom P(F(x)). Thus the variable x has type M in P(F(x))
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<- Q(x) because the types of the two occurrences of x in the statement can be unified to give
the type M. Thus the argument F(x) of P has type L(M) in this statement.

MODULE ParametricTypes.

BASE M.

CONSTRUCTOR L/1.

FUNCTION F : a -> L(a).

PREDICATE P : L(M);

Q : a.

P(F(x)) <- Q(x).

In addition, we need to extend the usual definitions of interpretation, model, logical conse-
quence, and so on, to polymorphic many-sorted logic. For a polymorphic many-sorted language,
an interpretation has a domain corresponding to every ground type and these domains are pairwise
disjoint. Then a constant such as Nil in module M3 with polymorphic type List(a) is assigned a
(countably infinite) set of domain elements, one in the domain of each ground type which can be
obtained by instantiating a in List(a) with all possible ground types. This corresponds to the
assignment as for a (monomorphic) many-sorted language of a single domain element to each of
the (monomorphic) constants which Nil represents. In a similar way, one can define the assign-
ments to functions and predicates. The definitions of model, logical consequence, and so on, also
generalise from a (monomorphic) many-sorted language to a polymorphic many-sorted language
in a similar way. The details can be found in appendix A.

For a module such as M3 which does not depend upon other modules, the language of the
module is the polymorphic many-sorted language defined by the language declarations in the
module. In chapter 5, we will extend this concept to the case where a module is one of a number
of modules constituting a program.

A statement 1 in a module is a formula in the language of the module having the form either
A or A <- W, where A is an atom, called the head of the statement, and W is a formula, called the
body of the statement. Any variables in A and any free variables in W are assumed to be universally
quantified at the front of the statement. In addition, each statement must satisfy a condition on
the types of the arguments in the head. This condition will be given shortly.

A goal 1 for a program consisting of a single module2 has the form <- W, where W is a formula
in the language of the module. W is called the body of the goal. Any free variables in W are assumed
to be universally quantified at the front of the goal.

Module M3 forms a complete program on its own. Typical goals for this program could be as
follows:

1In chapter 7 we shall extend this definition to include commits.
2The module must also be open. See chapter 5 for the definition of an open module.
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<- Append3(Cons(Monday,Nil), Cons(Tuesday,Nil), Cons(Wednesday,Nil), x).

<- Append3(x, y, z, Cons(Fred,Cons(Bill,Cons(Mary,Nil)))).

When a goal is given for a program consisting of a single module2, the goal is first checked to
make sure it is a formula in the language of the module. A desirable requirement of a type system
is that goals can then be run with no run-time type checking. However, we need to impose two
conditions to ensure this property holds.

The first of these conditions is the head condition.

• A statement satisfies the head condition if the tuple of types of the arguments of the head
in the statement is a variant of the type declared for the predicate in the head.

Note that the head condition is satisfied by the statement in module ParametricTypes and also
each statement in module M3.

The second condition is transparency. To state this, some new terminology is convenient. The
type appearing on the right of the -> in a function declaration is called the range type.

• A declaration for a function is transparent if every parameter appearing in the declaration
also appears in the range type.

Then, under the assumptions that each statement satisfies the head condition and that each
function declaration is transparent, it can be shown that no run-time type checking is needed
with standard proof procedures. For example, no type error will occur if a program and goal
are run under the usual (untyped) SLDNF-resolution. (See [13, theorem 5.7].) The head condi-
tion and transparency are general and natural conditions, so their imposition rarely causes any
inconvenience.

Lists are a common data structure. Thus Gödel provides, via the module system, a built-in
constructor for list processing. The constructor is called List and has arity 1. There is also a
constant Nil and a function Cons, whose declarations are as follows.

CONSTANT Nil : List(a).

FUNCTION Cons : a * List(a) -> List(a).

Gödel also provides a special list syntax which is syntactic sugar on top of Nil and Cons. This
is the usual [. . .] and | syntax. Thus the list

Cons(Fred,Cons(Bill,Cons(Mary,Nil)))

can be written more conveniently as

[Fred,Bill,Mary].

Similarly, the list

Cons(Fred,Cons(Bill,x))

can be written as

[Fred,Bill|x].
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The way the constructor List/1, the list notation, and the various list processing predicates
are made available for use is by means of the module Lists, which is provided by the system. In
the module Lists, the constructor List/1 is declared, as are the constant Nil and the function
Cons. Also a collection of useful list processing predicates, including Append, is defined there.
Another module can make these predicates available for use by means of an IMPORT module
declaration. For example, in module M4, the IMPORT declaration imports into M4 the constructor
List, the constant Nil, the function Cons, and various predicates including Append. Thus List,
Nil, Cons, and Append are available for use in M4. We shall see the way Lists exports these in
chapters 5 and 6. In general, if a module imports from another module, it imports all the symbols
exported by the other module.

With this use of modules and the special list notation, we can now give the final version of
module M1, which is module M4. Modules M4, Lists, and Integers (see chapter 4), which is
imported by Lists, together form a program. Typical goals for this program could then be as
follows.

<- Append3([Monday], [Tuesday], [Wednesday], x).

<- Append3(x, y, z, [Fred,Bill,Mary]).

MODULE M4.

IMPORT Lists.

BASE Day, Person.

CONSTANT Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday :

Day;

Fred, Bill, Mary : Person.

PREDICATE Append3 : List(a) * List(a) * List(a) * List(a).

Append3(x,y,z,u) <-

Append(x,y,w) &

Append(w,z,u).



Chapter 3

Formulas

As we indicated in chapter 2, arbitrary formulas can be used in the bodies of statements and
goals. In this chapter, we examine the use of this facility in more detail.

3.1 Quantifiers and Connectives

In Gödel, conjunction is denoted by &, disjunction by \/, negation by ~, (left) implication by <-,
(right) implication by ->, and equivalence by <->. The universal quantifier is denoted by ALL

and the existential quantifier is denoted by SOME. Each quantifier has two arguments, the first
being a list of the quantified variables and the second the scope of the quantifier. Note that the
types of the quantified variables in the body of a statement or goal are not declared. The types
of these variables are assigned by the type checker along with the types of the other variables in
the statement or goal.

As an example, module Inclusion below contains the definition of the predicate IncludedIn,
which is true when its first argument is a list of elements of some type and its second argument is
a list of elements of the same type which includes all the elements appearing in the first argument.
Thus, for example, the goal1

<- IncludedIn([1,3,2],[4,3,2,1]).

succeeds and the goal

<- IncludedIn([1,5,2],[4,3,2,1]).

fails.
Allowing an arbitrary formula to appear in the body of a goal is very useful for querying

databases, such as module DB below. A typical goal to the program formed by this module could
be the following:
Does every person with a mother also have a father?

<- ALL [x] (SOME [z] Father(z,x) <- SOME [y] Mother(y,x)).

1Note that the integers are available in the module Inclusion since they are imported via Lists. See chapter
6.

23
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MODULE Inclusion.

IMPORT Lists.

PREDICATE IncludedIn : List(a) * List(a).

IncludedIn(x,y) <-

ALL [z] (Member(z,y) <- Member(z,x)).

Taking advantage of the notational convention that a variable name beginning with an ‘_’ stands
for a unique variable existentially quantified at the front of the atom in which it appears, the
previous goal can be written more compactly as follows.

<- ALL [x] (Father(_,x) <- Mother(_,x)).

Another goal could be the following:
Find a mother who has no father.

<- SOME [z] Mother(x,z) & ~ SOME [y] Father(y,x).

Using the underscore notation, this can be written as follows.

<- Mother(x,_) & ~ Father(_,x).

Sometimes a programmer may only be interested in the values of a subset of the free variables
in the body of a goal. In this case, the unwanted variables can be masked out using the following
colon notation. For example, suppose the goal was as follows:
Find all grandparents of Jane.

<- x : Parent(x,y) & Parent(y,Jane).

The “x :” reads “find the x such that”. In general, there can be zero or more variables before
the colon, separated by commas. Actually, the “x,y,... :” can be replaced by an equivalent
“SOME [u,v,...]”, as in

<- SOME [y] (Parent(x,y) & Parent(y,Jane)).

However, the : notation is usually more convenient, since it expresses directly the variables of
interest and is usually shorter. It is an error if a variable appears before the colon but is not
a free variable in the body of the goal. Note that the colon notation is not available for use in
statements.
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MODULE DB.

BASE Person.

CONSTANT Fred, Mary, George, James, Jane, Sue : Person.

PREDICATE Ancestor, Parent, Mother, Father : Person * Person.

Ancestor(x,y) <-

Parent(x,y).

Ancestor(x,y) <-

Parent(x,z) &

Ancestor(z,y).

Parent(x,y) <-

Mother(x,y).

Parent(x,y) <-

Father(x,y).

Father(Fred, Mary).

Father(George, James).

Mother(Sue, Mary).

Mother(Jane, Sue).

3.2 Conditionals

The connectives and quantifiers introduced so far provide an expressive language in which to
write goals and statements. However, there are situations for which it is advantageous to provide
constructs with specialised procedural semantics. The most common such situation is when a
programmer wants to use a formula of the form

(Condition & Formula1) \/ (~Condition & Formula2)

in a body. Although this formula is written with the connectives introduced so far, this ap-
proach has the disadvantage that Condition may be computed twice. Obviously, if Condition
is computationally expensive, this is undesirable. For this reason, Gödel also has IF-THEN and
IF-THEN-ELSE constructs, called conditionals, with specialised procedural semantics to avoid this
inefficiency.

Each of these constructs has two forms. The first form of the IF-THEN construct is

IF Condition THEN Formula

where Condition and Formula are formulas. (If Condition has an existential quantifier at the top
level, then Condition must be bracketed for this form of the IF-THEN. The reason for this will
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become clear shortly.) This formula is defined to mean

(Condition & Formula) \/ ~Condition

or, equivalently,

Condition -> Formula.

So this construct is redundant. It is included mainly because it completes the collection of
conditionals.

Sometimes this first form of the IF-THEN construct is not suitable because Condition and
Formula share local variables. For this reason, a second form of the IF-THEN construct due to
Naish [17] is available. This is

IF SOME [x1,...,xn] Condition THEN Formula

where Condition and Formula are formulas. This formula is defined to mean

(SOME [x1,...,xn] (Condition & Formula)) \/ ~ SOME [x1,...,xn] Condition.

Note carefully that this is a non-standard use of the connective IF-THEN in that the quantification
extends over both Condition and Formula. However, from a programming viewpoint, this non-
standard use is very convenient. An implementation of this form of IF-THEN must avoid the
inefficiency of computing Condition twice.

Now we turn to the IF-THEN-ELSE construct. The first form of this is

IF Condition THEN Formula1 ELSE Formula2

where Condition, Formula1 and Formula2 are formulas. (If Condition has an existential quantifier
at the top level, then Condition must be bracketed for this form of the IF-THEN-ELSE.) This
formula is defined to mean

(Condition & Formula1) \/ (~Condition & Formula2).

As an example of the use of this form of IF-THEN-ELSE, here is a definition of the predicate
Max, which computes the maximum of its first two arguments.

Max(x,y,z) <- IF x =< y THEN z = y ELSE z = x.

Gödel has a second, more flexible, form of the IF-THEN-ELSE construct due to Naish [17],
which is

IF SOME [x1,...,xn] Condition THEN Formula1 ELSE Formula2

where Condition, Formula1 and Formula2 are formulas. This formula is defined to mean

(SOME [x1,...,xn] (Condition & Formula1)) \/ (~ SOME [x1,...,xn] Condition & Formula2).

Implementations of both forms of IF-THEN-ELSE must avoid the inefficiency of computing Con-
dition twice.

If a programmer wants to make use of the first form of IF-THEN, but the condition has an
existential quantifier at the top level, then explicit scoping must be indicated by using brackets.
Thus

IF (SOME [x1,...,xn] Condition) THEN Formula

means



3.2. CONDITIONALS 27

((SOME [x1,...,xn] Condition) & Formula) \/ ~ SOME [x1,...,xn] Condition

and not

(SOME [x1,...,xn] (Condition & Formula)) \/ ~ SOME [x1,...,xn] Condition.

Similar remarks apply to the first form of IF-THEN-ELSE.
Nesting of these constructs is allowed, so that a conditional can appear inside another condi-

tional. For example, a case statement can be simulated by a formula of the form

IF C1 THEN S1

ELSE IF C2 THEN S2

ELSE ...

ELSE IF Cn THEN Sn.

Note that the ambiguity in a formula such as

IF C1 THEN IF C2 THEN S1 ELSE S2

is resolved as

IF C1 THEN (IF C2 THEN S1) ELSE S2

that is, the ELSE is associated with the outermost IF. A construct such as

IF SOME [v1,...,vn] (P1 & ... & Pk) THEN S1 ELSE S2

can be written without the parentheses as follows:

IF SOME [v1,...,vn] P1 & ... & Pk THEN S1 ELSE S2.

The precise grammar for conditionals is given in chapter 11.
As an example of the use of the IF-THEN-ELSE construct, consider the module AssocList

below, which defines the predicate Lookup for looking up an association list. The list consists of
pairs having an integer key in the first argument and a string in the second. (See the module
Strings in chapter 6.) The definition of Lookup is due to Naish [17]. If Lookup is called with
only its first and third arguments instantiated, and there is a pair in the association list having
key value equal to the first argument, it returns all such pairs. If the second argument is also
instantiated and there is a pair in the association list with arguments equal to the first and second
arguments, resp., of the call to Lookup, then it succeeds. If it is called with the first and third
argument, and possibly the second argument, instantiated and there is no pair in the association
list having key value equal to the first argument, it inserts the pair containing the first and second
arguments into the association list. Note the quantification of the variable v over the condition
and the THEN part, and how this gives the required behaviour of Lookup. Thus, for example, the
goal

<- Lookup(5, value, [Pair(5,"abc"), Pair(5,"xyz"), Pair(1,"lmn")], list).

has the answers

list = [Pair(5,"abc"),Pair(5,"xyz"),Pair(1,"lmn")]

value = "abc"
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and

list = [Pair(5,"abc"),Pair(5,"xyz"),Pair(1,"lmn")]

value = "xyz"

while the goal

<- Lookup(4, "rst", [Pair(5,"abc"), Pair(2,"xyz"), Pair(1,"lmn")], list).

has the answer

list = [Pair(4,"rst"),Pair(5,"abc"),Pair(2,"xyz"),Pair(1,"lmn")].

MODULE AssocList.

IMPORT Strings.

BASE PairType.

FUNCTION Pair : Integer * String -> PairType.

PREDICATE Lookup : Integer * String * List(PairType) * List(PairType).

Lookup(key, value, assoc_list, new_assoc_list) <-

IF SOME [v] Member(Pair(key,v), assoc_list)

THEN

value = v &

new_assoc_list = assoc_list

ELSE

new_assoc_list = [Pair(key,value) | assoc_list].

The Gödel programming style makes significant use of conditionals. This is illustrated in
chapter 10 where several programs use statements involving complicated nested conditionals.

3.3 Operators

It is often convenient to employ prefix, infix, or postfix notation instead of the standard logical
notation for terms and atoms. For example, we usually prefer to write 1 + 2 instead of +(1,2),
x < y instead of <(x,y), and x * y + z instead of +(*(x,y),z). For this reason, Gödel provides
a mechanism for declaring operators, which are functions or predicates employing such notation.

FUNCTION declarations allow the optional declaration of fixity, precedence, and associativity
of unary or binary functions via function indicators. The general form of an indicator for an infix
binary function is either xFx(N), xFy(N), or yFx(N). Each of xFx, xFy, and yFx is a specifier.
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The N , which is a positive integer, is the precedence. The position of the F indicates that the
fixity of the function is infix. We shall see shortly how the x and y indicate associativity. Prefix
and postfix binary functions are not allowed. For example, the module Integers provided by the
system contains the following function declarations.

FUNCTION ^ : yFx(540) : Integer * Integer -> Integer;

* : yFx(520) : Integer * Integer -> Integer;

+ : yFx(510) : Integer * Integer -> Integer;

- : yFx(510) : Integer * Integer -> Integer.

These declarations allow the use of infix notation. For example, the specifier yFx in the declaration
for + in Integers indicates that + is infix so that x + y can be written instead of +(x,y), and x

+ (y + z) instead of +(x,+(y,z)).
However, with the fixity information alone, although we can use the infix notation, we must al-

ways bracket subterms with structure. For a term containing functions with distinct precedences,
the precedence information is used to disambiguate the meaning of the term in the absence of
brackets. The precedence rule is that the higher its precedence, the more strongly a function
binds its arguments. For example, the precedence 510 for + and the precedence 520 for * in
Integers indicate that the term x * y + z means (x * y) + z and not x * (y + z). If the
latter meaning is intended, then the term must be written with explicit bracketing to indicate this.
In general, precedence (and associativity) information in indicators can always be over-ridden by
explicit bracketing.

The associativity information is needed when a term contains functions with the same prece-
dence. An x indicates that the argument in that position must have precedence strictly higher
than the precedence of the function having the indicator, while a y indicates that the argument
in that position must have precedence higher than or equal to the precedence of the function
having the indicator. For this purpose, the precedence of a term is the precedence of its top-level
function, where the precedence of a function without an indicator is taken to be (plus) infinity.
The precedence of variables, constants, and terms enclosed in brackets is also assumed to be (plus)
infinity. Thus the specifier xFy means the function is right associative, yFx means the function
is left associative, and xFx means the function is non-associative. For example, the indicator
yFx(510) in the declaration for + in Integers declares it to be infix, left associative, and to have
precedence 510. So the term x + y + z means (x + y) + z and not x + (y + z). Also the
indicator yFx(520) in the declaration for * in Integers declares it to be infix, left associative,
and to have precedence 520. So the term x * (y + z) * w means (x * (y + z)) * w. Since ^
(exponentiation) has indicator yFx(540), the term

x + 45 * z ^ w ^ u * 2

means

x + ((45 * ((z ^ w) ^ u)) * 2).

Indicators do provide notational convenience. However, this last example shows that it is
possible to overdo their use. Often a set of well-placed brackets, even if they are strictly redundant,
greatly reduces the difficulty of understanding the meaning of a complicated term.

The general form of a unary function indicator is either xF(N), Fx(N), yF(N), or Fy(N),
where the specifier is either xF, Fx, yF, or Fy, and N , which is a positive integer, is the precedence.
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Fx and Fy indicate prefix, and xF and yF indicate postfix. The x and y have the same meanings
as for binary functions. For example, the module Integers also contains the following function
declaration.

FUNCTION - : Fy(530) : Integer -> Integer.

The indicator Fy(530) declares (unary) - to be prefix, right associative, and to have precedence
530. Thus the term -x + y means (-x) + y and the term - -x means -(-x).

PREDICATE declarations have an optional fixity declaration using a predicate indicator. Predi-
cate indicators consist solely of a specifier which indicates the fixity of the predicate. The specifier
for a binary infix predicate is zPz. Prefix and postfix binary predicates are not allowed. A spec-
ifier for a unary predicate is either Pz, indicating that the predicate is prefix, or zP, indicating
that the predicate is postfix.

For example, Integers contains the following predicate declarations.

PREDICATE > : zPz : Integer * Integer;

< : zPz : Integer * Integer;

>= : zPz : Integer * Integer;

=< : zPz : Integer * Integer.

The indicator zPz in the declaration for =< declares it to be infix. Thus one can write the atom
=<(t1,t2) in the more convenient form t1 =< t2.

More formally, an operator is a function or predicate whose language declaration contains an
indicator. The precise syntax of operators can be found in chapter 11. The use of operators can
lead to ambiguities in the parsing of expressions, as is illustrated in chapter 5.



Chapter 4

Equality and Numbers

In this chapter, we discuss the equality predicate and also the modules which provide the integers,
rationals, and floating-point numbers.

4.1 Equality

Equality is a distinguished predicate in logic because it is so fundamental. The same is true of the
equality predicate = in Gödel. Equality is built into the system and is available in every module
without being imported. It has the following declaration.

PREDICATE = : zPz : a * a.

A companion to equality is the disequality predicate ~=, whose declaration and definition are as
follows.

PREDICATE ~= : zPz : a * a.

x ~= y <-> ~(x = y).

Disequality is also built into the system and is available in every module without being imported.
The equality theory (for user-defined types) is given in section A.3 for the general case. We

illustrate this here by giving the equality theory for the program which consists just of the mod-
ule M3. Note that, in each of the following axioms, any variables in an axiom are assumed to be
universally quantified at the front of the axiom. First, we have the axioms corresponding to the
axiom (schema) 1 of the equality theory.

Monday ~= Tuesday.

Monday ~= Wednesday.
...

Sunday ~= Saturday.

Fred ~= Bill.

Fred ~= Mary.

Bill ~= Mary.
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There is nothing corresponding to axiom 2 since there is only one function in the language of
module M3. Corresponding to axiom 3, we have the following axiom.

Cons(x,y) ~= Nil.

The following axiom (schema) corresponds to axiom 4.

Cons(s,t) ~= x, where Cons(s,t) contains x.

Then comes the axiom corresonding to axiom 5.

(x1 ~= y1 \/ x2 ~= y2) -> Cons(x1,x2) ~= Cons(y1,y2).

Finally, there are the reflexivity and substitutivity axioms corresponding to axioms 6, 7 and 8.

x = x.

(x1 = y1 & x2 = y2) -> Cons(x1,x2) = Cons(y1,y2).

(x1 = y1 & x2 = y2) -> (x1 = x2 -> y1 = y2).

(x1 = y1 & x2 = y2 & x3 = y3) -> (Append(x1,x2,x3) -> Append(y1,y2,y3)).

(x1 = y1 & x2 = y2 & x3 = y3 & x4 = y4) ->

(Append3(x1,x2,x3,x4) -> Append3(y1,y2,y3,y4)).

The equality theory consisting of all the above axioms corresponds to “syntactic identity”, that
is, two (ground) terms of the same type are equal if and only if they are syntactically identical.
It is often the case that an intended interpretation of such a theory is an Herbrand interpretation
[15] with equality interpreted as identity. However, for some system-defined base types, such
as Integer, Rational, and Float corresponding to the integers, rationals, and floating-point
numbers, respectively, equality is handled differently. For these types, we do not want to treat
equality as syntactic identity. To see this, consider the terms (of type Integer)

23 + (3 * 5)

and

40 - 2.

With the axioms of the equality theory of section A.3, these two terms would not be equal.
However, the domain of the intended interpretation is the integers and the intended interpretation
of the functions in these terms are the usual arithmetic operations on the integers. For this (non-
Herbrand) interpretation, the terms are equal because they both evaluate to 38. Consequently, for
the type Integer, the corresponding = is given the standard meaning of equality on the domain
of integers. The types Rational and Float are treated similarly. More complicated types that
involve Integers, Rationals, and Floats, as well as other bases and constructors, are handled
in the obvious way. Consider, as an example, the type List(Integer). For this, the components
of a term corresponding to the constructor List of the type (that is, Cons and Nil) are handled
using syntactic identity and the components corresponding to the base Integer are handled using
the intended meaning of equality on the integers. Thus, for example, the goal

<- [2+3,6] = [5,7-1].
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succeeds because [2+3,6] = [5,7-1] is true in the intended interpretation.
One subtle point when using underscores with ~= is worth noting. Recall that a variable

beginning with an underscore in an atom in a body means a unique variable existentially quantified
at the front of the atom. If an underscore appears in S ~= T , where S and T are terms, we treat
this as ~(S = T), in which case the underscore becomes a unique variable universally quantified
at the front of S ~= T . So, for example, F(x) ~= F(_) means ALL [y] F(x) ~= F(y), where
y is a unique variable, and the call F(x) ~= F(_) will fail. Similarly, x ~= [_|_] means ALL

[u,v] x ~= [u|v], where u and v are unique variables. Thus the call S ~= [_|_] succeeds if S
is the empty list and fails if it is a non-empty list. Note that x ~= [_|_] should be distinguished
from x ~= [y|z], for which the y and z are treated as ordinary variables. Thus, if, for example,
x ~= [y|z] occurs as a top-level conjunct in the body of a statement, and y and z do not occur
elsewhere in the statement, then it is equivalent to SOME [y,z] x ~= [y|z].

In addition to the built-in predicates = and ~=, the system also has two built-in propositions,
True and False. The definition of True is

True.

The proposition False has the empty definition. True and False are built into the system and
are available in every module without being imported. So the complete list of built-in propositions
and predicates is True, False, =, and ~=.

4.2 Integers

Gödel provides a comprehensive set of functions and predicates with numerical arguments via
the modules Integers, Rationals, and Floats. We discuss the module Integers in this section
and the modules Rationals and Floats in subsequent sections.

The base type Integer is provided by the module Integers. The export part (except for
the control declarations) of Integers is given below. The complete export part of Integers is
given in chapter 13. The export part of a module contains language declarations for symbols that
it makes available to other modules which import from it. The keyword EXPORT indicates the
export part of a module.

The export part of the Integers “declares” the constants 0, 1, 2, and so on. Since there
are infinitely many non-negative integers and since the syntax does not support the declaration1

of infinitely many symbols of any kind, this “declaration” is simply indicated by a comment in
the export part of Integers. The system knows that Integers is to be treated specially in
this regard. The export part of Integers also contains declarations of the prefix unary function
- (minus), and the infix binary functions ^ (exponentiation), * (multiplication), Div (integer
quotient), Mod (modulus), + (addition), and - (subtraction), each of whose arguments has type
Integer and which map to an element of type Integer. Integers declares the unary function Abs

(absolute value) and the binary functions Max (maximum), and Min (minimum). It also declares
the binary predicates >, <, >=, =<, and the ternary predicate Interval all having arguments of
type Integer. The intended meaning of Interval is that its second argument is greater than or
equal to its first argument and less than or equal to its third argument.

1Such a syntax could be provided, but we do not consider it important enough just for this one case.
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EXPORT Integers.

BASE Integer.

% CONSTANT 0, 1, 2, ... : Integer.

FUNCTION ^ : yFx(540) : Integer * Integer -> Integer;

- : Fy(530) : Integer -> Integer;

* : yFx(520) : Integer * Integer -> Integer;

Div : yFx(520) : Integer * Integer -> Integer;

Mod : yFx(520) : Integer * Integer -> Integer;

+ : yFx(510) : Integer * Integer -> Integer;

- : yFx(510) : Integer * Integer -> Integer;

Abs : Integer -> Integer;

Max : Integer * Integer -> Integer;

Min : Integer * Integer -> Integer.

PREDICATE > : zPz : Integer * Integer;

< : zPz : Integer * Integer;

>= : zPz : Integer * Integer;

=< : zPz : Integer * Integer;

Interval : Integer * Integer * Integer.

The module Integers conforms to the standard for the data type Integer in the Language
Independent Arithmetic Standard (LIAS) [1]. This is a draft ISO standard which specifies the
essential properties of integer and floating-point numbers that can be relied on in writing portable
software. An implementation of Gödel must therefore conform to this standard. Furthermore, an
implementation of the module Integers must be sound, that is, the body of a goal concerning
the integers with a computed answer applied should be true in the intended interpretation.

To illustrate how equality for the integers is used, suppose a module which imports Integers
defines a predicate P as follows.

PREDICATE P : Integer * Integer.

P(x,x).

Then a goal such as

<- P(3 + 4, (17 Div 6) + 5).

succeeds. The reason it succeeds is, of course, because 3 + 4 = (17 Div 6) + 5 is true in the
intended interpretation. Similarly, the goal

<- P(2*x-3, 5)
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gives the answer x = 4.
As an example of the use of Integers consider the module GCD below. The predicate Gcd

is intended to be true when its first and second arguments are integers and its third argument
is the greatest common divisor of the first two arguments. Note that GCD contains essentially
a specification of Gcd rather than an efficient algorithm, such as the Euclidean algorithm. Note
also that the system provides the usual mathematical syntax for expressing ranges of integers. A
range expression of the form r =< s =< t, where r, s and t are terms of type Integer, is compiled
into the call Interval(r,s,t). Range expressions involving < are also be compiled into calls
to Interval by adjusting appropriate arguments of the expression by 1 so that =< can be used
instead of <.

MODULE GCD.

IMPORT Integers.

PREDICATE Gcd : Integer * Integer * Integer.

Gcd(i,j,d) <-

CommonDivisor(i,j,d) &

~ SOME [e] (CommonDivisor(i,j,e) & e > d).

PREDICATE CommonDivisor : Integer * Integer * Integer.

CommonDivisor(i,j,d) <-

IF (i = 0 \/ j = 0)

THEN

d = Max(Abs(i),Abs(j))

ELSE

1 =< d =< Min(Abs(i),Abs(j)) &

i Mod d = 0 &

j Mod d = 0.

Gödel can solve systems of (not necessarily linear) constraints which involve integers, variables
which range over bounded intervals of integers, and the functions and predicates exported by
Integers (including, of course, = and ~=). The precise constraint solving capabilities available
in Gödel are not specified but are implementation dependent. However, we give some examples
of what could be considered as “minimal” capabilities that should be provided. For example, for
the program consisting of the module Integers, the goals

<- 32*4 >= (130 Mod 4).

<- x + 43 = 73 + (34 Mod 4).
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<- 0 =< x =< 10 & 0 < y =< 10 & 35*x + 33*y =< 34.

<- 0 < x =< 10 & x ~= 2 & x^2 < 12.

should succeed with the answer x = 32 for the second goal, answer x = 0 and y = 1 for the third
goal, and answers x = 1 and x = 3 for the fourth goal.

One can also find Pythagorean numbers using the goal

<- x^2 + y^2 = z^2 & 0 < x < 50 & 0 < y < 50 & 0 < z.

This goal should give the answers

x = 3

y = 4

z = 5

x = 4

y = 3

z = 5

x = 5

y = 12

z = 13

and so on.
Note also that infinite precision integer arithmetic is provided. The only limit to the complex-

ity of an arithmetic computation is the limit on the memory available to the Gödel system. A
computation involving very large integers may eventually exhaust the stack or heap space avail-
able, in which case the computation will halt with an error message. Also, an attempt to divide
by zero will cause the computation to halt with an error message.

4.3 Rationals

Next we discuss the module Rationals which provides a similar collection of functions and
predicates with rational arguments, as does Integers for integer arguments. The intended domain
is the rationals Q. The various functions, such as +, -, etc., have their usual interpretation as
mappings from Q×Q (or Q, as appropriate) into Q. Similarly, the various predicates, such as >,
<, etc., have their usual interpretation on Q×Q.

The function // of type Integer * Integer -> Rational is the function which is used in
the usual mathematical construction of the rationals from the integers. The notation N//M means
the rational with numerator N and denominator M. As a useful notational convention, a rational
of the form N//1 can be written more simply as N. The system will assume by default that a
number N, which could be an integer or a rational, is a rational if no other information can resolve
the ambiguity. Since rational division in Gödel is denoted by /, this convention means that, in
many situations, the usual mathematical notation for rationals can be used instead of //. For
example, it is possible to write 2/3 with the usual mathematical meaning. Here the numerator
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EXPORT Rationals.

IMPORT Integers.

BASE Rational.

FUNCTION // : yFx(520) : Integer * Integer -> Rational;

^ : yFx(540) : Rational * Integer -> Rational;

- : Fy(530) : Rational -> Rational;

* : yFx(520) : Rational * Rational -> Rational;

/ : yFx(520) : Rational * Rational -> Rational;

+ : yFx(510) : Rational * Rational -> Rational;

- : yFx(510) : Rational * Rational -> Rational;

Abs : Rational -> Rational;

Max : Rational * Rational -> Rational;

Min : Rational * Rational -> Rational.

PREDICATE > : zPz : Rational * Rational;

< : zPz : Rational * Rational;

>= : zPz : Rational * Rational;

=< : zPz : Rational * Rational;

StandardRational : Rational * Integer * Integer.

2 is understood as the rational 2//1 and the denominator 3 as the rational 3//1. Thus 2/3 is
indeed the rational 2//3. Using these conventions, for the program consisting of the modules
Rationals and Integers, the goal

<- x = 5 + 9/7.

succeeds with answer x = 44/7 and the goal

<- x = 4/3 + 2/3.

succeeds with answer x = 2.
When giving answers, the system returns (non-zero) rationals in the form N/M, where M>0 and

Gcd(N,M) = 1. For example, the goal

<- x = 120/25.

succeeds with answer x = 24/5 and the goal

<- x = -4/(-5).

succeeds with answer x = 4/5.
Notice that a goal such as
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<- x//y = 4/5.

has infinitely many answers and hence may flounder. (This depends on the implementation.)
However, Gödel does provide a way to get the numerator and denominator of a rational in standard
form. Let us say a rational is in standard form if the greatest common divisor of the numerator and
the denominator is 1, and the denominator is positive. Then the predicate StandardRational is
intended to be true when its second and third arguments are the numerator and denominator of
the (unique) rational in standard form equal to the rational in the first argument. Thus the goal

<- StandardRational(34/(-8),x,y).

gives the answer x = -17 and y = 4.
Gödel solves systems of linear rational constraints involving rationals, variables of type

Rational, and the functions and predicates exported by Rationals. For this class of constraints,
there are polynomial time algorithms for deciding solvability (see, for example, [14]). However,
the precise constraint solving capabilities provided are implementation dependent. The following
examples give an indication of what may be provided. For example, the goals

<- 3*x + 2*y = 3 & (7/2)*x + y = 0.

<- 4*x + 5 >= 16 & -x =< 2.

<- 3*x + 4*y = 1 & x - 2*y = 2 & x >= 0.

should succeed with answer x = -3/4 and y = 21/8 for the first goal, answer x >= 11/4 for the
second goal, and answer x = 1 and y = -1/2 for the third goal. Note that infinite precision
rational arithmetic is provided.

4.4 Floats

The module Floats provides floating point numbers and a large set of functions and predicates
with floating-point arguments. Part of the export part of Floats is given below. The complete
export part of Floats is given in chapter 13. The module Floats conforms to the standard
for the data type Floating-Point in LIAS. It also conforms to the ANSI/IEEE Standard for
Binary Floating-Point Arithmetic 754–1985 [2]. An implementation of this module must therefore
conform to both these standards.

The intended interpretation of the symbols in this module is as follows. The intended domain
of the interpretation is the finite set F of floating-point numbers characterised by a fixed radix,
a fixed precision, and fixed smallest and largest exponent. Thus F is the finite set of numbers
of the form either 0 or ±0.f1...fp ∗ r

e, where r is the radix, p is the precision, e is the exponent,
and each fi satisfies 0 ≤ fi < r. Note that the LIAS boolean denorm is true. Thus denormalised
floating-point numbers are provided.

The language of Floats contains finitely many constants, exactly one corresponding to each
floating-point number in F . However, for the convenience of the user, there is some syntactic sugar
used instead of the names of these constants. This is the usual decimal number notation, with or
without an exponent. Typical decimal numbers without exponent are 3.1416 and 0, and typical
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EXPORT Floats.

% Part of the export part of Floats.

IMPORT Integers.

BASE Float.

% CONSTANT Finitely many constants, one for each number in the finite set F

% of floating-point numbers determined by the radix, precision, and smallest and

% largest exponent.

FUNCTION ^ : yFx(540) : Float * Float -> Float;

- : Fy(530) : Float -> Float;

* : yFx(520) : Float * Float -> Float;

/ : yFx(520) : Float * Float -> Float;

+ : yFx(510) : Float * Float -> Float;

- : yFx(510) : Float * Float -> Float;

Abs : Float -> Float;

Max : Float * Float -> Float;

Sqrt : Float -> Float;

Sign : Float -> Float;

Fraction : Float -> Float;

Scale : Float * Integer -> Float;

Successor : Float -> Float;

Truncate : Float * Integer -> Float;

Round : Float * Integer -> Float;

IntegerPart : Float -> Float;

Sin : Float -> Float;

ArcSin : Float -> Float;

Exp : Float -> Float.

PREDICATE IntegerToFloat : Integer * Float;

TruncateToInteger : Float * Integer;

Exponent : Float * Integer;

Radix : Integer;

MaxExponent : Integer;

MaxFloat : Float;

Epsilon : Float;

> : zPz : Float * Float.
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decimal numbers with exponent are -2.345619E-12 and 674328.89E+2. Such decimal numbers
are converted (according to the ANSI/IEEE standard 754–1985) by the system to floating-point
numbers in the form above. Then the convention is that a decimal number is syntactic sugar for
the constant whose interpretation is the floating-point number obtained from the decimal number.
This means that there is more than one way of denoting each of these constants. For example,
both 3.1416 and 314.16E-2 denote the same constant. Similarly, when answers are displayed by
the system, floating-point numbers are converted back to the more convenient decimal form.

This module is intended for straightforward numerical computation and no (non-trivial) con-
straint solving capabilities are provided. For example, for the program consisting of the modules
Floats and Integers, the goals

<- x = Sin(Sqrt(23.45812E+23) + 4.56E-13/0.432167E-2).

<- Exp(-2.0389E+1) < ArcSin(0.7349001).

both succeed, with answer x = -0.99172602406708 for the first goal. Similarly, suppose a module
which imports Floats defines a predicate P as follows.

PREDICATE P : Float * Float.

P(x,x).

Then a goal such as

<- P(3.345 + 4.89E+2, x + 23.8889).

succeeds with answer x = 468.4561.

4.5 Numbers

The module Numbers is provided as a convenient way of loading all the number modules togeth-
er. The export part of Numbers is given below. It also contains two predicates for converting
between rationals and floating-point numbers. The conversion functions for integers/rationals are
in Rationals and the conversion predicates for integers/floats are in Floats.

EXPORT Numbers.

IMPORT Rationals, Floats.

PREDICATE RationalToFloat : Rational * Float;

FloatToRational : Float * Rational.
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Modules

Gödel is intended to be used for the development of large and complex programs. For this, there
needs to be a means of decomposing a program into smaller components so these components can
be developed independently, as far as possible. Also there needs to be a way of avoiding interfer-
ence between the components because of name clashes and a way of hiding the implementation
details of the components. In Gödel, these components are called modules. We now turn to an
explanation of the Gödel module system, which satisfies these requirements.

5.1 Importing and Exporting

In general, modules consist of two parts, an export part and a local part. The export part of a
module is indicated by an export declaration, which is either an EXPORT or CLOSED declaration.
The local part of a module is indicated by a local declaration, which is either a LOCAL or MODULE
declaration. In these declarations, the keywords EXPORT, CLOSED, LOCAL and MODULE are followed
by the name of the module. In fact, a module may have a local and an export part, or just a
local part, or just an export part. The other kind of module declaration is the import declaration,
which is either an IMPORT or LIFT declaration. In these declarations, the keywords IMPORT and
LIFT are followed by the name of a module.

The export part of a module begins with an export declaration, and contains zero or more
import declarations, language declarations, and control declarations. The local part of a module
begins with a local declaration, and contains zero or more import declarations, language decla-
rations, control declarations, and statements. If a module consists only of a local part, then this
is indicated by using a MODULE declaration instead of a LOCAL declaration. The use of a CLOSED

declaration instead of an EXPORT declaration will be explained shortly.
We now introduce the concepts of importation, accessibility, and exportation in an informal

way, ignoring the concept of type lifting which is discussed later. The precise definition of these
concepts is given in section 5.2.

We say a part of a module declares a symbol if it contains a language declaration for that
symbol. We say a module declares a symbol if either the local or export part of the module
declares the symbol. We say a part of a module imports a symbol if the part contains an IMPORT

declaration with the module name N, say, and either the module N declares this symbol in its
export part or, inductively, N imports the symbol into its export part. We say a symbol is
accessible to the local (resp., export) part of a module if it is either declared in, or imported into,

41
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a part of the module (resp., the export part of the module). We say a module exports a symbol
if the symbol is accessible to the export part of the module.

Subject to the module conditions given in section 5.2, a symbol accessible to a part of a module
is available for use in that part of the module. More precisely, a base or constructor accessible to
a part of a module can appear in a CONSTANT, FUNCTION, or PREDICATE declaration in that part
of the module. Similarly, a constant, function, proposition, or predicate accessible to a part of a
module can appear in a statement in the module. Of course, a symbol can only be used according
to its language declaration.

We illustrate these concepts with the modules M5 and M6 below. Module M5 has an export part
and a local part. The export part of M5 makes all the symbols it declares or imports available for
use by other modules, such as M6. In particular, the declarations for the bases Day and Person,
the declarations for the constants Monday, Fred, and so on, and the declaration for the predicate
Append3 make these symbols available for use by other modules which import M5. The IMPORT

declaration in the export part of M5 makes the symbols exported by Lists available for use in
M5. It also makes the symbols exported by Integers available for use in M5, since the export
part of Lists imports Integers. Any module which imports M5 automatically imports all the
symbols exported by Lists and Integers and hence does not need to explicitly import Lists
or Integers to make these available for use. The local part of M5 contains the definition of the
predicate Append3, which uses the definition of Append from Lists.

EXPORT M5.

IMPORT Lists.

BASE Day, Person.

CONSTANT Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday :

Day;

Fred, Bill, Mary : Person.

PREDICATE Append3 : List(a) * List(a) * List(a) * List(a).

LOCAL M5.

Append3(x,y,z,u) <-

Append(x,y,w) &

Append(w,z,u).

By contrast with module M5, module M6 has only a local part. Hence its first module dec-
laration uses the keyword MODULE instead of LOCAL. It imports all the symbols exported by M5,
which include Append3 together with all the symbols exported by Lists and Integers. Module
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MODULE M6.

IMPORT M5.

PREDICATE Member2 : a * a * List(a).

Member2(x,y,z) <-

Append3(_,[x|_],[y|_],z).

M6 contains the definition of the predicate Member2. Member2(x,y,z) is intended to be true if
and only if z is a list which contains x and y as members so that x precedes y in the list.

Informally, a program consists of a set of modules {Mi}ni=0 (n ≥ 0), where M0 is a distinguished
module called the main module and {Mi}ni=1 is the set of modules which are either imported by
M0 or are imported by modules imported by M0, and so on. (A formal definition is given in section
5.4 and chapter 11.) For the above example, {M6, M5, Lists, Integers} is a program with main
module M6.

Certain modules are provided by the system and hence are called system modules. For example,
Integers and Lists are system modules. The complete set of system modules is given in chapter
13. Other modules are called user-defined modules. Note that the export declaration in the export
part of a system module may contain the keyword CLOSED instead of EXPORT. A module is closed
if its export part contains a CLOSED declaration and open if it is not closed. In closed modules
the visibility of symbols accessible to the local part of the module is restricted. (The precise
restrictions are given later.) This effectively increases the range of implementations available.
For example, the local part of a closed module does not have to be implemented in Gödel. An
implementation of Gödel may make some or all of the system modules closed. However, user-
defined modules must be open.

In general, symbols declared in, or imported into, the local part of a module are not available
for use in the export part of the module. However, there are occasions when it is desirable that
selected bases and constructors imported into the local part of a module should also be available
for use in its export part (and hence other modules that import it). For this reason, Gödel has
a facility called type lifting. We illustrate how type lifting works in figure 5.1 below. Suppose
B is a base declared in the export part of N and we want to lift B from the local to the export
part of M. Then N would be imported into the local part of M, but via a LIFT declaration instead
of an IMPORT declaration. The LIFT declaration imports N, as an IMPORT declaration does, but
also provides the opportunity to lift bases and constructors exported by N so as to make them
accessible to the export part of M. This is achieved by redeclaring in the export part of M the bases
and constructors that are to be lifted. For the example, the base B is redeclared in the export
part of M. A base or constructor is redeclared by repeating its declaration in the export part of
the module in which it is being lifted. The symbol is thereby made accessible to the export part
of the module. Only bases and constructors can be lifted.

Type lifting has several desirable properties which we illustrate with the example. First, the
fact that the base B is exported from M is made explicit by repeating its declaration in the export



44 CHAPTER 5. MODULES

EXPORT M.

BASE B. ← B is redeclared here.

...

LOCAL M.

LIFT N. ← N is imported and B is lifted here.

...

EXPORT N.

BASE B. ← B is declared here.

...

LOCAL N.

...

Figure 5.1: Type Lifting

part of M. In fact, since a user who only has access to the export part of M cannot tell whether
the declaration declares or redeclares B and since it makes no difference anyway, the user might
just as well assume B is actually declared there. Second, we can change the details of N without
affecting in any way the users of M. This includes changing the name of N or even removing N

altogether, if this became possible. Third, other symbols exported by N which are needed just for
the implementation of M are hidden from the users of M.

5.2 Module Declarations and Conditions

We now give a precise meaning to the various module declarations and also give the module
conditions which every module must satisfy.

A symbol is a base, constructor, constant, function, proposition, or predicate.
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A type symbol is a base or constructor. Other symbols are non-type symbols.
A part of a module refers to a module N if it contains a declaration of the form

IMPORT N.

or

LIFT N.

A module M refers to a module N if either the local or export part of M refers to N.
The local part of a module M 1-imports a symbol S via a module N if S has a declaration in

the export part of N and the local part of M refers to N.
The export part of a module M 1-imports a symbol S via a module N if S has a declaration in

the export part of N and either (i) the export part of M refers to N, or (ii) the local part of M refers
to N via a LIFT declaration, S is a type symbol, and there is a declaration for S in the export part
of M. In the latter case, the export part of M also 1-redeclares S.

The local part of a module M n-imports, n > 1, a symbol S via a module N if there is a module
L such that the export part of L (n− 1)-imports S via N and the local part of M refers to L.

The export part of a module M n-imports, n > 1, a symbol S via a module N if there is a
module L such that the export part of L (n− 1)-imports S via N and either (i) the export part of
M refers to L, or (ii) the local part of M refers to L via a LIFT declaration, S is a type symbol, and
there is a declaration for S in the export part of M. In the latter case, the export part of M also
n-redeclares S.

A part of a module M imports a symbol S via a module N if the part of M n-imports S via N,
for some n ≥ 1.

A module M imports a symbol S via a module N if either the local or export part of M imports
S via N.

The export part of a module redeclares a type symbol S if it n-redeclares S, for some n ≥ 1.
The export part of a module declares a type symbol if it contains a declaration for, but does

not redeclare, the symbol. It declares a non-type symbol if it contains a declaration for the
symbol.

The local part of a module declares a symbol if it contains a declaration for the symbol.
A module declares a symbol if either the local or export part of the module declares the

symbol.
A part of a module M imports a symbol S from a module N if the part of M imports S via N and

the export part of N declares S.
A module M imports a symbol S from a module N if either the local or export part of M imports

S from N.
A symbol is accessible to the local (resp., export) part of a module if it is either declared in,

or imported into, the module (resp., export part of the module).
A module exports a symbol if the symbol is accessible to the export part of the module.
Now let us turn to the module conditions, M1 to M5. The first of these ensures that the

module structure of a program is non-circular and hence greatly simplifies compilation. To state
this condition, we introduce a new concept. We define the relation depends upon between modules
to be the transitive closure of the relation refers to. So, for example, module M6 depends upon
the modules M5, Lists, and Integers.
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M1: No module may depend upon itself.

The next module condition ensures that, in any given module part, the only names that can
appear are names of symbols that are accessible.

M2: For every name appearing in a part of a module, there must be a symbol having that name
accessible to that part.

Overloading is a useful programming language facility. For example, it is convenient to use
the name - for both unary and binary minus, and the name + for addition of integer, rational,
and floating point numbers. For this reason, Gödel has a flexible scheme for overloading. The
only condition on naming symbols enforced by the system is the following module condition (in
which the arity of a base, constant, or proposition is 0).

M3: Distinct symbols cannot be declared in the same module with the same category, name, and
arity.

To ensure that, for example, every constant of type a base, B say, and every function of range
type B is declared in the module where B is declared, the following module condition is enforced.

M4: In a module, a type in a constant declaration or the range type in a function declaration
must be either a base type declared in the module or a type with a top-level constructor
declared in the module.

For example, module condition M4 means that a user-defined module, which imports Lists,
is not allowed to declare a constant of type List(τ), for any type τ .

To ensure that no definition of a proposition or predicate can be split across several modules,
the following final condition is enforced.

M5: A module must declare every proposition or predicate defined in that module.

5.3 Ambiguity

The enforcement of module condition M3 avoids gratuitous ambiguity, but at the same time
allows considerable flexibility in overloading. The system uses all type and indicator information
available to try to disambiguate the use of a name which could refer to different symbols and, in
most cases, will be able to resolve the ambiguity. In those circumstances where it cannot resolve
the ambiguity, an overloading error message is issued. Note carefully that a precondition for an
overloading error is the use of a name for which there is more than one accessible symbol having
this name. By the use of a name in a module we mean any appearance of the name except as
the identifier after the keyword of a language declaration. So, for example, it is always legal for
a module to import two distinct symbols with the same name or to import a symbol with the
same name as a symbol declared in the module if the name of these symbols is not used anywhere
in the module. This requirement reduces the reporting of overloading errors to those that cause
genuine difficulty.

Another cause of ambiguity is the use of operators, which can lead to ambiguities in the
parsing of expressions. Suppose a local part of a module has two symbols accessible to it with
the following declarations.
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PREDICATE P : zPz : Integer * Integer.

FUNCTION P : xFy(500) : Integer * Integer -> Integer.

Then the expression u P v P w, used for example in a place where an atom should appear, is
ambiguous.

Also, if the function with name F1 and indicator yFx(500), and the function with name F2

and indicator xFy(500) are accessible to the same module, then the expression u F2 v F1 w is
ambiguous. Similarly, if the function with name F3 and indicator yF(400), and the function with
name F4 and indicator Fy(400) are accessible to the same module, then the expression F4 u F3

is ambiguous.
As another example of a situation where module condition M3 is satisfied but where an

ambiguity cannot be resolved, consider the modules M7, M8, and M9 below. The system has no
way of determining which symbol with name Q is the one intended in the body of the statement
for P. The only way to fix the problem in modules M7, M8, and M9 is to change the name of one of
the predicates with name Q in modules M8 and M9.

MODULE M7.

IMPORT M8, M9.

PROPOSITION P.

P <-

Q(x).

EXPORT M8.

BASE B1.

PREDICATE Q : B1.

EXPORT M9.

BASE B2.

PREDICATE Q : B2.
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5.4 Programs and Goals

A program consists of a set of modules {Mi}ni=0 (n ≥ 0), where {Mi}ni=1 is the set of modules
upon which M0 depends and where each module satisfies the module conditions given in section
5.3. The module M0 is called the main module of the program.

To define a statement, we introduce the language of a module in a program.

• The language of a module M in a program is the polymorphic many-sorted language given
by the language declarations of all symbols accessible to the local part of M.1

We will also need the export language of a module.

• The export language of a module M in a program is the polymorphic many-sorted language
given by the language declarations of all symbols accessible to the export part of M.

To define a goal, we introduce the goal language of a program.

• The goal language of a program P is the language of the main module M0 of P, if M0 is open,
or the export language of M0, if M0 is closed.

A statement 2 in a module M in a program is a formula in the language of M having the form
either A or A <- W, where A is an atom, called the head of the statement, and where W is a formula,
called the body of the statement. Any variables in A and any free variables in W are assumed to
be universally quantified at the front of the statement. Each statement in a module must satisfy
the head condition given in chapter 2.

A goal 2 for a program has the form <- W, where W is a formula in the goal language of the
program. W is called the body of the goal. Any free variables in W are assumed to be universally
quantified at the front of the goal.

As an example, typical goals for the program {M6, M5, Lists, Integers} could be

<- Member2(x,y,[Fred,Bill,Mary]).

<- Member2(1,4,[56,7,3,4,5]).

<- Append3([1,-1],[2,-2],[3,-3],x).

If a variable in a goal becomes bound to a term which contains a subterm not in the goal
language of the program, then only the type of the subterm is given in an answer. (There is one
exception to this rule. If the term is of type String, then the string is printed in its external
syntax. See chapter 6.) For example, consider the program consisting of the modules Hidden1
and Hidden2 below. The goal

1Some care must be taken with this definition and the two that follow. The reason is that, because of ambiguity,
a symbol may not be uniquely identified by its name. For example, there is a predicate with name Q declared in
the module M8 and another predicate with the same name declared in module M9 and both these symbols appear
in the language of M7. It is understood that a formula is only admitted by the language of a module if the use
of each name in the formula can be disambiguated. Later, for the ground representation (see chapter 9), we will
introduce flat names to avoid such problems. The flat name of a symbol is a quadruple consisting of the name of
the module in which the symbol is declared, the name of the symbol, its category, and its arity. Module condition
M3 ensures that the flat name of a symbol in a program uniquely identifies it.

2This definition will be generalized in chapter 7 to the case when commits are present in the body.
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<- Father(x).

produces the answers

x = Individual(Bill)

x = Individual(<Name>)

where the phrase <Name> indicates that the argument of Individual is a term with a top-level
constant or function which is not accessible and that this term has type Name.

MODULE Hidden1.

IMPORT Hidden2.

EXPORT Hidden2.

BASE Name, Person.

CONSTANT Bill : Name.

FUNCTION Individual : Name -> Person.

PREDICATE Father : Person.

LOCAL Hidden2.

CONSTANT Fred : Name.

Father(Individual(Bill)).

Father(Individual(Fred)).





Chapter 6

Various Data Types

In this chapter, we discuss six fundamental data types: lists, strings, sets, tables, units, and
flocks; and also the system modules which provide them.

6.1 Lists

The symbols exported by the system module Lists are shown below in its export part (which
is complete except for the control declarations). The constructor List is used to give a type to
domains whose elements are lists. Thus, for example, the domains of the intended interpretation
for the program {Lists, Integers} are the integers (having type Integer), all lists of integers
(having type List(Integer)), all lists of lists of integers (having type List(List(Integer))),
and so on. Note that the elements of a list must all be of the same type, so, for example, it is not
possible for a list to have some of its elements integers and some of its elements lists of integers.
If a programmer would like to form a list having some elements of type A and some of type B,
say, then this can in essence be achieved, as follows. Declare a new type, say,

BASE Element.

and two new functions, say,

FUNCTION F : A -> Element;

G : B -> Element.

Then a list of elements of type Element can be formed, each member of which “packages up” an
element of type A or B. In fact, the existence of F and G facilitates the processing of the elements
of such lists and is good programming practice.

The module Lists provides a collection of useful list processing predicates, the details of
which can be found in chapter 13. As an illustration of the use of lists, consider the module
Qsort below. The predicate Quicksort in Qsort is intended to be true when its first argument
is a list of integers and its second argument is the list of integers occurring in the first argument
sorted into non-decreasing order. The predicate Partition is intended to be true when its first
argument is a list L of integers, its second argument is an integer n, its third argument is the list
of integers in L which are less than or equal to n, and its fourth argument is the list of integers
in L which are greater than n.

51
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EXPORT Lists.

IMPORT Integers.

CONSTRUCTOR List/1.

CONSTANT Nil : List(a).

FUNCTION Cons : a * List(a) -> List(a).

PREDICATE Member : a * List(a);

MemberCheck : a * List(a);

Append : List(a) * List(a) * List(a);

Permutation : List(a) * List(a);

Delete : a * List(a) * List(a);

DeleteFirst : a * List(a) * List(a);

Reverse : List(a) * List(a);

Prefix : List(a) * Integer * List(a);

Suffix : List(a) * Integer * List(a);

Length : List(a) * Integer;

Sorted : List(Integer);

Sort : List(Integer) * List(Integer);

Merge : List(Integer) * List(Integer) * List(Integer).

6.2 Strings

Next we turn to strings. A base type String is defined in the system module Strings which
provides a collection of useful predicates for processing strings. The export part of Strings
(except for the control declarations) is given below. Note that there is no type for characters.

Strings are treated as an abstract data type. Thus it is not possible to directly access or
display the constants and functions used in the (internal) representation of strings. However, as
a convenience, Gödel provides the usual double quotes notation for strings as a kind of external
syntax for them. Thus "ABC" is the external syntax for the string whose first character is A, second
character is B, and third character is C. Similarly, "" is the external syntax for the empty string.
A double quote can appear in a string by escaping it with a \, as in "This is a string with

a \" in it.". To include a \ in a string, use \\. A single \ (not escaping a \ or a ") in a string
is ignored. The predicate StringInts allows conversion between a string and the list of ASCII
codes of characters in the string. Thus the call StringInts(x, [77,111,110,100,97,121])

would bind x to the string whose external syntax is "Monday".
This external syntax can be used to input string arguments in the following way. Suppose a

predicate P having declaration

PREDICATE P : String * ... .
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MODULE Qsort.

IMPORT Lists.

PREDICATE Quicksort : List(Integer) * List(Integer);

Partition : List(Integer) * Integer * List(Integer) * List(Integer).

Quicksort([],[]).

Quicksort([x|xs],ys) <-

Partition(xs,x,l,b) &

Quicksort(l,ls) &

Quicksort(b,bs) &

Append(ls,[x|bs],ys).

Partition([],_,[],[]).

Partition([x|xs],y,[x|ls],bs) <-

x =< y &

Partition(xs,y,ls,bs).

Partition([x|xs],y,ls,[x|bs]) <-

x > y &

Partition(xs,y,ls,bs).

appears in a program. Then an atom of the form P("abc",...), for example, may appear in a
statement or goal. Such an atom is expanded (in principle) by the system into

StringInts(x,[97,98,99]) & P(x,...).

This convention gives users all the convenience of the usual syntax for inputting strings and, at
the same time, respects the Gödel module conditions.

For output at the top level of the system, if the binding for a variable of type string in a
goal has to be written, the system intervenes by calling the predicate WriteString from the IO

module (see chapter 8) to write it. Thus what is being written is not the term the variable is
bound to, but the external syntax for the term. For stand-alone programs, WriteString would
be called directly by the program to write out any strings.

The function ++ is used to concatenate strings, so that the call x = "MOD" ++ "ULE" would
bind x to the string "MODULE". The predicate Width gives the number of characters in a string,
so that the call Width("Fred" ++ ".prm", x) would bind x to 8. The predicate < is lexical less
than for strings, > is lexical greater than, and so on.

6.3 Sets

By a “set”, we understand the usual mathematical concept. However, for reasons of simplicity,
Gödel only handles finite sets. Thus, “set” means “finite set” throughout. The export part
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EXPORT Strings.

IMPORT Lists.

BASE String.

FUNCTION ++ : String * String -> String.

PREDICATE StringInts : String * List(Integer);

FirstSubstring : String * Integer * String;

LastSubstring : String * Integer * String;

Width : String * Integer;

> : zPz : String * String;

< : zPz : String * String;

>= : zPz : String * String;

=< : zPz : String * String.

(excluding the control declarations) of the system module Sets is given below. Sets exports
the constructor Set, which plays a role for sets that is analogous to the role played by the
constructor List for lists. Thus, for example, the domains of the intended interpretation for the
program {Sets, Integers} are the integers (having type Integer), all sets of integers (having
type Set(Integer)), all sets of sets of integers (having type Set(Set(Integer))), and so on.

Two kinds of set terms are allowed: extensional set terms and intensional set terms. We first
consider extensional set terms. The module Sets exports the constant Null and the function
Inc, which are used to form extensional set terms. (This is similar to the treatment of finite
sets in [6].) The intended meaning of Null is the empty set (of the appropriate type). The
intended meaning of Inc (which is short for Include) for some type τ is the mapping Inc such
that Inc(d, S) = {d} ∪ S, where d is an element from the domain of type τ and S is a set of
elements of type τ . Thus, the intended meaning of the term

Inc(6,Inc(5,Inc(6,Null)))

is the set {5, 6}.
In a similar way to lists, some notational sugar for sets is provided. An expression of the form

{}

stands for the constant

Null.

An expression of the form

{t1,...,tn}

stands for the extensional set term
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EXPORT Sets.

IMPORT Integers.

CONSTRUCTOR Set/1.

CONSTANT Null : Set(a).

FUNCTION Inc : a * Set(a) -> Set(a);

* : yFx(120) : Set(a) * Set(a) -> Set(a);

+ : yFx(110) : Set(a) * Set(a) -> Set(a);

\ : yFx(100) : Set(a) * Set(a) -> Set(a).

PREDICATE In : zPz : a * Set(a);

Subset : zPz : Set(a) * Set(a);

StrictSubset : zPz : Set(a) * Set(a);

Size : Set(a) * Integer.

Inc(t1,Inc(t2,...,Inc(tn,Null)...)).

An expression of the form

{t1,...,tn|s}

stands for the extensional set term

Inc(t1,Inc(t2,...,Inc(tn,s)...)).

It is important to appreciate that an extensional set term is not a set.1 However, its intended
meaning is a set and this is the reason for the use of the brackets { and } in the above notation.

A special equality is required for sets because the order of elements in a set is irrelevant and
because sets do not have duplicate elements. Thus, for example, the following equalities are true
in the intended interpretation:

{5,6} = {6,5}

and

{5,6} = {5,6,6}.

1Actually, we could make a similar point about lists. An expression such as [1,2] is not a list, but notational
sugar for the term Cons(1,Cons(2,Nil)). However, the intended meaning of this term is a list. It is pedantic to
insist on this distinction for lists, but the more complicated equality for sets makes the distinction important in
the latter case. It explains why it makes sense to write such things as {1,2,1}, where elements are repeated.
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The module Sets also provides some standard set processing functions and predicates. Set-
theoretic intersection is given by the function *, union by the function +, and difference by the
function \. Set membership is given by the predicate In, inclusion by the predicate Subset, and
strict inclusion by the predicate StrictSubset. The cardinality of a set is given by the predicate
Size.

For the program {Sets, Integers}, the goal

<- x = Inc(1,Inc(2,Inc(1+1,Null))).

gives the answer x = {1,2} and the goal

<- x = {1,2,3,4,5} + {4,5,6,7,8} \ {3,4,5,6}.

gives the answer x = {1,2,7,8}.
As a further example of set processing, consider the module SetProcessing below, which

defines two predicates Sum and Max. The intended meaning of Sum is that the second argument is
the sum of the integers in the set in the first argument. Thus the goal

<- Sum({1,2,3,3},s).

gives the answer s = 6. The intended meaning of Max is that the second argument is the maximum
of the integers in the set in the first argument. Thus the goal

<- Max({1,2,3},m).

gives the answer m = 3. A further example of this kind of set processing appears in chapter 10,
where a solution of the wolf-goat-cabbage problem is given.

Next we discuss intensional set terms. These have the form

{T : W}

where T is a term with free variables y1,...,yn, say, and W is a formula (not involving com-
mits) which has y1,...,yn amongst its free variables. The variables y1,...,yn must be local to
{T : W}. The free variables of {T : W} are the free variables of W other than y1,...,yn. (Note
that T may itself be an intensional set term and that it is possible for n to be 0.) Intuitively,
{T : W} means “the set of all instances of T corresponding to the instances of W which are true”.

The meaning of a term {T : W} appearing in a statement or goal is given by the following
transformation: {T : W} is replaced by a new variable, s say, and the formula

ALL [x] (x In s <-> SOME [y1,...,yn] ((x = T) & W))

is added as an additional conjunct to the body of the statement or goal. For a term of the
form {{T : W1} : W2}, this transformation is first applied to {{T : W1} : W2} and then to
{T : W1}, that is, the transformation is applied first to outermost intensional set terms. This
semantics for intensional set terms was first given in [5]. An implementation of intensional set
terms must guarantee that it is sound, although it does not have to explicitly use the above
transformation, of course.

Now we give some examples of processing with intensional set terms. Consider the program
{Sets, Integers}. Then the goal
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MODULE SetProcessing.

IMPORT Sets.

PREDICATE Sum : Set(Integer) * Integer.

Sum(s,y) <-

x In s &

Sum1(s\{x},x,y).

PREDICATE Sum1 : Set(Integer) * Integer * Integer.

Sum1({},x,x).

Sum1(s,x,x+w) <-

z In s &

Sum1(s\{z},z,w).

PREDICATE Max : Set(Integer) * Integer.

Max(s,y) <-

x In s &

Max1(s\{x},x,y).

PREDICATE Max1 : Set(Integer) * Integer * Integer.

Max1({},x,x).

Max1(s,x,y) <-

z In s &

IF z>x THEN Max1(s\{z},z,y) ELSE Max1(s\{z},x,y).

<- x = {s : s Subset {z : n Mod z = 0 & 1 =< z < 10}} & n = 10.

gives the answer x = {{},{1},{2},{5},{1,2},...,{1,2,5}} and the goal

<- x = {{n^2 : 1 =< n =< m} : 1 =< m =< 5}.

gives the answer x = {{1},{1,4},{1,4,9},{1,4,9,16},{1,4,9,16,25}}.
As another example of the use of intensional sets, consider the module SetProcessing again.

The goal

<- Sum({x : 100 Mod x = 0 & 1 < x < 100}, s).

gives the answer s = 116 and the goal
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<- Max({x^2 + y^2 : -100 =< x =< 20 & -10 =< y =< 30}, m).

gives the answer m = 10900.
Consider finally the module Sports below. Then the goal

<- x = {p : Likes(p,Tennis)}.

gives the answer x = {Mary, Bill, Joe}, the goal

<- x = {s : Likes(Fred,s)}.

gives the answer x = {}, the goal

<- x = {p : Likes(p,s)} & s In {Cricket,Football}.

gives the answers

s = Cricket, x = {Mary,Bill}

s = Football, x = {Joe}

and the goal

<- x = {Pair(p,y) : y = {s : Likes(p,s)} & p In {Mary,Bill,Joe,Fred}}.

gives the answer

x = {Pair(Mary,{Cricket,Tennis}), Pair(Bill,{Cricket,Tennis}),

Pair(Joe,{Tennis,Football}), Pair(Fred,{})}.

6.4 Tables

A table is a data structure containing an ordered collection of nodes, each of which has two
components, a key and a value. The key must be a string, but the value can have any type. The
key in a node uniquely identifies the node in the table. Furthermore, the keys in a table provide
a natural ordering of the nodes via the lexical ordering.

A table is treated as an abstract data type and the system module Tables (see below) pro-
vides various operations on this type. EmptyTable is true when its argument is an empty table.
NodeInTable is used to search for a node a table, InsertNode to insert a node into a table, and
DeleteNode to delete a node from a table. UpdateTable is true when its first argument is a
table, its second is the key of a node in the table, its third is a new value to be associated with
this key, its fourth is the table with the node updated, and the fifth is the old value that was
associated with the key. AmendTable is a variation of UpdateTable which can be used when the
key in the second argument is not necessarily present in the table. If it is, AmendTable behaves
similarly to UpdateTable. If it is not, a new node with this key is inserted into the table. (The
precise definition of AmendTable is given in chapter 13.) To display a table as a pair of a list of
keys (lexically ordered by the keys) and a list of corresponding values, the predicate ListTable

is used. FirstNode gives the first node in a table and LastNode the last node (according to the
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MODULE Sports.

IMPORT Sets.

BASE Person, Sport, PersonSports.

CONSTANT Mary, Bill, Joe, Fred : Person;

Cricket, Football, Tennis : Sport.

FUNCTION Pair : Person * Set(Sport) -> PersonSports.

PREDICATE Likes : Person * Sport.

Likes(Mary, Cricket).

Likes(Mary, Tennis).

Likes(Bill, Cricket).

Likes(Bill, Tennis).

Likes(Joe, Tennis).

Likes(Joe, Football).

EXPORT Tables.

IMPORT Strings.

CONSTRUCTOR Table/1.

PREDICATE EmptyTable : Table(a);

NodeInTable : Table(a) * String * a;

InsertNode : Table(a) * String * a * Table(a);

DeleteNode : Table(a) * String * a * Table(a);

UpdateTable : Table(a) * String * a * Table(a) * a;

AmendTable : Table(a) * String * a * a * Table(a) * a;

JoinTables : Table(a) * Table(a) * Table(a);

ListTable : Table(a) * List(String) * List(a);

FirstNode : Table(a) * String * a;

LastNode : Table(a) * String * a;

NextNode : Table(a) * String * String * a;

PreviousNode : Table(a) * String * String * a.
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lexical ordering of keys). NextNode finds the node next in this ordering after a specified node and
PreviousNode finds the previous one.

As a simple example of the use of the module Tables, the module DoubleTable below contains
the definition of a predicate Double, which is true when its first argument is a table of nodes
with integer values and its second argument is a table which differs from the first only in that
all nodes whose key has width > 5 have a value double that of the value in the corresponding
node in the table in the first argument. Since it is necessary to check the width of every key
in the table, one way to proceed is to use ListTable to produce a list of the keys and a list of
the corresponding values, make a pass through the lists to find the keys which have width > 5
(and their corresponding values), and use UpdateTable to update those nodes which have a key
satisfying this condition.

EXPORT DoubleTable.

IMPORT Tables.

PREDICATE Double : Table(Integer) * Table(Integer).

6.5 Units

Units are term-like data structures having the following grammar:

Unit −→ Identifier
| Identifier <‘(’> <‘)’>
| Identifier <‘(’> UnitSeq <‘)’>

UnitSeq −→ Unit {<Comma> Unit}

where the notation {. . .} indicates 0 or more occurrences of the included item and | indicates
alternative forms. An identifier can be quite complicated and, for example, includes quoted and
double quoted identifiers, such as ’ABC’ and "string_identifier". The grammar for identifier
is given in chapter 11. For example, each of the following are units:

F(A,x)

ABC

f(g(a,b),1,h(x,y)).

Gödel provides the type Unit as an abstract data type. Thus there is a representation of
units, which is hidden from the programmer, and some operations on this type provided by the
system module Units. (See below.) StringToUnit is true when its first argument is the string
representation of a unit and its second argument is this unit. UnitToString is true when its first
argument is a unit and its second argument is the string representation of this unit. UnitParts
is true when its first argument is a unit, the second argument is the top-level identifier of this
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LOCAL DoubleTable.

% PREDICATE Double : Table(Integer) * Table(Integer).

Double(table, new_table) <-

ListTable(table, keys, values) &

Double1(table, keys, values, new_table).

PREDICATE Double1 : Table(Integer) * List(String) * List(Integer) *

Table(Integer).

Double1(table, [], [], table).

Double1(table, [k|ks], [v|vs], new_table) <-

DoubleNode(table, k, v, next_table) &

Double1(next_table, ks, vs, new_table).

PREDICATE DoubleNode : Table(Integer) * String * Integer * Table(Integer).

DoubleNode(table, key, value, next_table) <-

IF (SOME [w] (Width(key,w) & w > 5))

THEN

UpdateTable(table, key, 2*value, next_table, value)

ELSE

next_table = table.

unit, and the third argument is the list of arguments of a unit. For example, for the program
with main module Units, the goal

<- new_string : StringToUnit("F(A,x)", unit) &

UnitParts(unit, identifier, arguments) &

UnitParts(new_unit, "G", arguments) &

UnitToString(new_unit, new_string).

gives the answer

new_string = "G(A,x)".

If the first argument of UnitParts is just an identifier, then the third is the empty list. Thus the
goal

<- arguments : StringToUnit("ABC", unit) & UnitParts(unit, identifier, arguments).

gives the answer

arguments = [].
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EXPORT Units.

IMPORT Strings.

BASE Unit.

PREDICATE StringToUnit : String * Unit;

UnitToString : Unit * String;

UnitParts : Unit * String * List(Unit);

UnitArgument : Unit * Integer * Unit.

Units are a general data structure which can be used for a variety of applications. For example,
it is easy to write a propositional or first order formula as a unit. Similarly, clauses in a Prolog
program can be regarded as units. In fact, the reason for the introduction of quoted and double
quoted identifiers is to have identifiers general enough for the latter application. Once a formula
or Prolog clause or whatever is written as a unit, it can be conveniently manipulated by the
predicates in Units.

6.6 Flocks

Units often congregate in flocks, which are ordered collections of units. There is a system module
Flocks (see below) which provides some operations on the abstract data type Flock. EmptyFlock
is true when its argument is an empty flock and Extent gives the number of units in a flock.
UnitInFlock and UnitWithIdentifier allow a program to access units in a flock. InsertUnit
is used to insert a unit into a flock and DeleteUnit is used to delete a unit from a flock. Further-
more, there is a utility flock-compile which takes a file containing a flock and produces a file
containing the representation of this flock employed by the abstract data type. Another utility,
flock-decompile reverses this process. The system module FlocksIO provides predicates to
access this representation. (This is discussed in more detail in chapter 8.)

The module Flocks is useful for many applications. For example, suppose that a programmer
wanted to use Gödel as a meta-programming language for doing transformation of Prolog pro-
grams. First, a programmer would use a utility (which may be supplied by the system) to convert
a Prolog program into a flock. (The main thing that has to be done is to write all operators in
standard form.) The module Flocks then provides much low-level support for doing whatever
transformation was required on the Prolog program. As a final step, another utility could be
applied to take a flock representation of the transformed Prolog program and rewite it to the
usual form. A similar procedure could be applied to other programming languages, which would
also require utilities for converting between programs in the language and flocks. Theories in
most logics can also be mapped rather easily into flocks. Thus the module Flocks provides a
convenient tool for implementing theorem provers and proof editors of such logics. As an appli-
cation of this kind, we give in chapter 10 a tableau propositional theorem prover which exploits
the utility flock-compile and the predicates in Units, Flocks, and FlocksIO.
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EXPORT Flocks.

IMPORT Units.

BASE Flock.

PREDICATE EmptyFlock : Flock;

Extent : Flock * Integer;

UnitInFlock : Flock * Unit * Integer;

UnitWithIdentifier : Flock * String * Unit * Integer;

InsertUnit : Flock * Unit * Integer * Flock;

DeleteUnit : Flock * Unit * Integer * Flock.





Chapter 7

Control

There are two aspects to control in Gödel. The first of these is the computation rule. The second
is Gödel’s pruning operator which determines those subtrees that will be pruned from the search
tree. We examine each of these in turn.

7.1 Computation Rule

The computation rule determines which literal or conditional in the current goal will be selected.
There are five reasons for employing a flexible computation rule:

• To ensure soundness.

• To assist efficiency.

• To assist termination.

• To solve constraints.

• To control pruning.

We discuss the first four of these in this section. (The use of a flexible computation rule to control
pruning will be discussed in the next section.)

We begin by discussing the role of a flexible computation rule in ensuring soundness. The
major requirement of any implementation of Gödel is that it be sound. This means that consid-
erable care must be taken when implementing certain facilities, such as negation, conditionals,
and intensional set terms, which are well-known to have difficulties in this regard. For example,
a standard way of implementing negation (called safe negation) is to delay a negative literal until
it is ground. Under this restriction, the soundness of the implementation can be proved. In any
case, whatever sound implementation of negation is employed, programmers may need to know
some details of the implementation since normally there are restrictions on what negative literals
can be run. Similar remarks apply to the implementation of conditionals and intensional set
terms.

Next we turn to a detailed discussion of the DELAY control facility of Gödel. The computation
rule is partly under the control of the programmer through explicit DELAY declarations. We first

65
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motivate the use of DELAY declarations to assist efficiency and termination by various examples.
After this motivation, the precise syntax and semantics of DELAY declarations will be presented.

Computation rules which allow coroutining between subgoals can be much more efficient than,
for example, the “leftmost literal” computation rule. As an example of this, consider the module
Coroutine below.

MODULE Coroutine.

IMPORT Lists.

PREDICATE Slowsort : List(Integer) * List(Integer).

Slowsort(x,y) <-

Sorted(y) &

Permutation(x,y).

Coroutine imports, in particular, the predicate Permutation from Lists. Permutation has
the following declarations and could be implemented by the following definition.

PREDICATE Permutation : List(a) * List(a).

DELAY Permutation(x,y) UNTIL NONVAR(x) \/ NONVAR(y).

Permutation([],[]).

Permutation([x|y],[u|v]) <-

Delete(u,[x|y],z) &

Permutation(z,v).

The DELAY declaration is a control declaration. In fact, DELAY declarations are syntactic variants
of when declarations, which are due to Naish [20]. The meaning of the DELAY declaration for
Permutation is that calls to Permutation will delay until either the first argument is not a
variable or the second argument is not a variable.

Coroutine also imports the predicate Sorted from Lists. The declarations and possible
definition for Sorted are as follows.

PREDICATE Sorted : List(Integer).

DELAY Sorted([]) UNTIL TRUE;

Sorted([_]) UNTIL TRUE;

Sorted([x,y|_]) UNTIL NONVAR(x) & NONVAR(y).

Sorted([]).

Sorted([_]).

Sorted([x,y|z]) <-

x =< y &

Sorted([y|z]).
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The meaning of the DELAY declaration for Sorted is as follows. If the argument of a call to Sorted
is not an instance of either [], [_], or [x,y|_], then the call delays. Thus the call Sorted(x)
delays. If the argument of a call to Sorted has the form [s,t|r], where either s or t is a variable,
then the call delays. Thus the call Sorted([1,x|y]) delays. If the argument of a call to Sorted

is either [] or has the form [r] or [s,t|r], where s and t are not variables, then the call can
proceed. Thus the calls Sorted([]) and Sorted([3,2|x]) can proceed.

Now, assuming the “leftmost literal” computation rule was employed, the statement for
Slowsort would have to be written as follows

Slowsort(x,y) <-

Permutation(x,y) &

Sorted(y).

so that the call to Permutation would be run before the call to Sorted. Thus a goal such as

<- Slowsort([6,1,5,2,4,3],x).

would take time having order n!, where n is the length of the input list. However, if the above
DELAY declaration on Sorted is employed, then the time taken for such goals for the module
Coroutine can be considerably reduced. Note that, using the DELAY declaration for Sorted, the
call to Sortedmay have to be put before the call to Permutation in the statement for Slowsort to
ensure that the desired coroutining behaviour is achieved. (This depends on the implementation.)
First, Sorted delays, then Permutation computes the first couple of elements of the permuted
list (assuming it has length greater than one), then Sorted checks if this much of the permuted
list is sorted, and so on.

Next we discuss the use of DELAY declarations to assist termination. Consider the module
M5 again. M5 imports the predicate Append from Lists, where Append has the following DELAY

declaration

DELAY Append(x,_,z) UNTIL NONVAR(x) \/ NONVAR(z).

Without this DELAY declaration for Append, the computation (using the “leftmost literal” com-
putation rule) of a goal such as

<- Append3(x,y,z,[1,2,3]).

gives all possible ways of splitting [1,2,3], but then goes into an infinite loop. However, with
the above DELAY declaration on Append instead, the computation of the goal gives all possible
ways of splitting the list and then terminates.

As another example, consider the predicate Delete, which the definition of Permutation uses
and which has the following declarations and possible definition.

PREDICATE Delete : a * List(a) * List(a).

DELAY Delete(_,y,z) UNTIL NONVAR(y) \/ NONVAR(z).

Delete(x,[x|y],y).

Delete(x,[y|z],[y|w]) <-

Delete(x,z,w).
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Now, using the “leftmost literal” computation rule, the computation of a goal such as

<- Permutation(x,[1,2,3]).

will first return the answer x = [1,2,3] and then, upon backtracking, will go into an infinite
loop. However, using the above DELAY declarations for Permutation and Delete instead, the
system will return all 6 permutations of [1,2,3] and then fail.

As well as the condition NONVAR, a DELAY declaration can use the condition GROUND. For
example. the predicate < in the module Floats has the following DELAY declaration.

DELAY x < y UNTIL GROUND(x) & GROUND(y).

This declaration delays calls to < until both its arguments are ground.
The fourth reason for employing a flexible computation rule is to solve constraints. In general,

a goal consists of a constraint and a non-constraint part, and coroutining between the two parts
is usually necessary for efficiency. Furthermore, just the solving of a system of constraints alone
may require coroutining. The control necessary for the efficient solving of constraints in the
modules Integers and Rationals is exercised by the system itself and cannot be changed by the
programmer.

We now turn to the definition of the syntax and semantics of DELAY declarations. A DELAY

declaration has the form

DELAY Atom UNTIL Cond.

where Atom is an atom, which is not a proposition, and Cond is given by the following grammar.

Cond −→ Cond1
| Cond1 ‘&’ AndSeq
| Cond1 ‘\/’ OrSeq

Cond1 −→ ‘NONVAR(’ var ‘)’
| ‘GROUND(’ var ‘)’
| ‘TRUE’
| ‘(’ Cond ‘)’

AndSeq −→ Cond1
| Cond1 ‘&’ AndSeq

OrSeq −→ Cond1
| Cond1 ‘\/’ OrSeq

where var is a variable in Atom.
A DELAY declaration for a predicate can only appear in the module where the predicate is

declared. Also, as is illustrated by the DELAY declaration for Sorted, a set of DELAY declarations
can be compacted into a single one of the form

DELAY Atom 1 UNTIL Cond 1;
...

Atom n UNTIL Cond n.

The following condition is placed on Atom.
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• No pair of Atom s in the set of DELAY declarations for a predicate can have a common
instance.

This condition simplifies the semantics of DELAY declarations. Without it, a situation could arise
where one declaration allowed a call to proceed, while another delayed it.

In the grammar for Cond, the reserved word & stands for conjunction, \/ stands for disjunction,
TRUE stands for the truth value true, NONVAR is true if and only if its argument is a non-variable
term, and GROUND is true if and only if its argument is a ground term. Now suppose an atom A is
an instance by a substitution θ of an Atom (that is, A = Atom θ) in a DELAY declaration. Then we
say A satisfies the corresponding condition Cond in this DELAY declaration if, when θ is applied
to the variables in Cond, the resulting condition has truth value true using the above meanings
given to the various reserved words. Otherwise, we say A does not satisfy the corresponding
condition. For example, the atom Permutation(x,[1|y]) is an instance of the atom in the
DELAY declaration for Permutation and satisfies the corresponding condition, Sorted([1,y|z])
and Sorted([1,3|y]) are both instances of the third DELAY declaration for Sorted but only
Sorted([1,3|z]) satisfies the corresponding condition.

Then DELAY declarations cause calls to be delayed according to the following rules:

• An atom in a goal is delayed if it has a common instance with some Atom in a DELAY

declaration but is not an instance of this Atom.

• An atom in a goal is delayed if it is an instance of an Atom in a DELAY declaration1 but
does not satisfy the corresponding condition Cond.

Thus DELAY declarations give programmers some influence over the computation rule and can be
used to ensure that certain calls will not be run until they are sufficiently instantiated.

As another example to illustrate the control facilities, we consider the predicate Merge in the
module Lists. Merge has the following declarations and possible definition.

PREDICATE Merge : List(Integer) * List(Integer) * List(Integer).

DELAY Merge(x,y,z) UNTIL (NONVAR(x) & NONVAR(y)) \/ NONVAR(z).

Merge([],x,x).

Merge(x,[],x).

Merge([u|x],[v|y],[u|z]) <-

u < v &

Merge(x,[v|y],z).

Merge([u|x],[v|y],[v|z]) <-

u >= v &

Merge([u|x],y,z).

The DELAY declaration for Merge shows that it can be used to either merge two given lists or else
split a given list. Thus the goal

<- Merge([1,4,8],[3,6,9],x)

has the answer x = [1,3,4,6,8,9], the goal

1There can be at most one such declaration.
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<- Merge(x,y,[1,4])

has the answers

x = [], y = [1,4]

x = [1,4], y = []

x = [1], y = [4]

x = [4], y = [1]

and the goal

<- Merge(x,[1,4],z)

flounders.
Now let us return to the DELAY declaration for Sorted again. It is clear from the above

definitions that the first and second parts of this declaration can be omitted and the effect will
be exactly the same. Thus the original DELAY declaration for Sorted could be replaced by

DELAY Sorted([x,y|_]) UNTIL NONVAR(x) & NONVAR(y).

The reason is that all calls to Sorted have the form either Sorted(x), or Sorted([]), or
Sorted([s]), or Sorted([s,t|r]). Thus there is no call to Sorted which would be delayed
by either of the first two parts of the declaration and which would not be delayed by the third
part. However, we prefer to keep the original form of the declaration for clarity and documentation
purposes.

Note that it is not always true that DELAY declarations with the condition TRUE have no effect
and hence can be omitted. For example, if a predicate has a single DELAY declaration with the
condition TRUE, then all calls which have a common instance with the atom of the declaration,
but are not an instance of the atom, are delayed.

It is also worth remarking that other DELAY declarations for Sorted are possible. The weakest
declaration (that is, the one that delays the least) is

DELAY Sorted(x) UNTIL NONVAR(x).

This declaration will allow some calls to Sorted to proceed and then delay at the subsequent call
to =<, whereas the original declaration will guarantee that once Sorted can proceed, the call to
=< will also be able to proceed immediately. DELAY declarations intermediate between these two
extremes are also possible and, in fact, there is little to choose between them. In general, when
there is a choice, we have opted for the strongest declaration applicable.

Finally, in the module EightQueens below, we give the Gödel version of an 8-queens program
due to Naish [20].

7.2 Pruning

The most general form of the Gödel pruning operator, called commit, has the form {. . .}_n, of
which two special cases have the form | and {. . .}. We begin by explaining with examples the
more familiar | commit, then we discuss the {. . .} commit, and finally give the most general form
of the commit.
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MODULE EightQueens.

IMPORT Lists.

PREDICATE Queen : List(Integer).

Queen(x) <-

Safe(x) &

Permutation([1,2,3,4,5,6,7,8], x).

PREDICATE Safe : List(Integer).

DELAY Safe(x) UNTIL NONVAR(x).

Safe([]).

Safe([x|y]) <-

NoDiagonal(x,1,y) &

Safe(y).

PREDICATE NoDiagonal : Integer * Integer * List(Integer).

DELAY NoDiagonal(_,_,z) UNTIL NONVAR(z).

NoDiagonal(_,_,[]).

NoDiagonal(x,y,[z|w]) <-

y ~= Abs(z - x) &

NoDiagonal(x,y+1,w).

However, before going on to discuss the details of the pruning operator, we make the following
important remark: well-written Gödel programs generally have very little need for pruning. For
example, apart from the programs in this chapter which are deliberately designed to illustrate
various aspects of pruning, there are remarkably few occurrences of the commit operator in
programs in this book. Programmers are strongly encouraged to avoid the use of (explicit)
pruning wherever possible, as such avoidance generally results in programs which have clearer
semantics and are more amenable to analysis and transformation. In particular, the “non-failing”
programming style of the propositional theorem prover in section 10.3 is worth studying as,
when applicable, it often results in a program with clearer declarative semantics and no need for
(explicit) pruning at all.

Now consider the module P1, which is a variation of the module Qsort in chapter 6 and
for which the predicate Quicksort is intended to be called with its first argument instantiated.
Module P1 uses the | version of the commit, which we call the bar commit. Declaratively, | is
just conjunction. However, for convenience, if either argument of | is True it can be omitted,
as in the first statement for Quicksort3. Each statement can contain at most one |. The scope
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of | is the formula to its left in the body of the statement. The order in which the statements
are tried is not specified, so that commit does not have the sequentiality property of cut. The
procedural meaning of | is that only one solution is found for the formula in its scope and all
other branches arising from the other statements in the definition which contain a | are pruned.
Thus the meaning of | is close to the commit of the concurrent logic programming languages.
Note that, while a | commit would normally appear in every statement of a definition for which
at least one | appears, this is not obligatory.

The DELAY declarations in module P1 enforce the intended use of Quicksort. Thus there are
DELAY declarations for Quicksort and Quicksort3 which delay calls to these predicates until their
first argument is not a variable. The DELAY declaration for Partition ensures that either the first
argument of a call to Partition will have its first argument the empty list, or the first element
of the list in the first argument and the second argument will be known so that an arithmetic
comparison between these can be carried out. In fact, the following weaker DELAY declaration for
Partition is also suitable.

DELAY Partition(x,_,_,_) UNTIL NONVAR(x).

If the first argument of a call to Partition is not a variable, the system can correctly commit to
either the first statement in case this argument is the empty list or otherwise to one of the second
and third statements. The commitment to either the second or third statement will be delayed
until enough information is known to run the arithmetic tests.

For the intended use of Quicksort, the statements in the definition for Quicksort3 are mu-
tually exclusive, in the sense that the system can commit to at most one of these. The same is
true for Partition. Thus no answer will be pruned – only useless computation will be pruned.
So, in this case, the commits enhance efficiency without affecting completeness. More generally,
the commits can prune answers.

Next we illustrate the Gödel one-solution commit, written {. . .}. Consider the module P2.
The intended meaning of Perm in P2 is that it should be true when its first argument is a list of
integers and its second argument is a permutation of the list in the first argument.

A goal such as

<- Perm([1,2,3],x).

will produce (in some order) the sequence of computed answers

x = [1,2,3]

x = [1,3,2]

...

x = [3,2,1]

If instead the goal was

<- {Perm([1,2,3],x)}.

then only one answer, x = [1,3,2], say, would be produced. The scope of the one-solution
commit {. . .} is the formula between the { and the }. When the scope is solved, all possible
alternative solutions to the scope are pruned away. Of course, the one-solution commit can also
be used in the bodies of statements in a program.
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MODULE P1.

IMPORT Lists.

PREDICATE Quicksort : List(Integer) * List(Integer).

DELAY Quicksort(x,_) UNTIL NONVAR(x).

Quicksort(x,y) <-

Quicksort3(x,y,[]).

PREDICATE Quicksort3 : List(Integer) * List(Integer) * List(Integer).

DELAY Quicksort3(x,_,_) UNTIL NONVAR(x).

Quicksort3([],xs,xs) <-

|.

Quicksort3([x|xs],ys,zs) <-

|

Partition(xs,x,l,b) &

Quicksort3(l,ys,[x|ys1]) &

Quicksort3(b,ys1,zs).

PREDICATE Partition : List(Integer) * Integer * List(Integer) * List(Integer).

DELAY Partition([],_,_,_) UNTIL TRUE;

Partition([u|_],y,_,_) UNTIL NONVAR(u) & NONVAR(y).

Partition([],_,[],[]) <-

|.

Partition([x|xs],y,[x|ls],bs) <-

x =< y |

Partition(xs,y,ls,bs).

Partition([x|xs],y,ls,[x|bs]) <-

x > y |

Partition(xs,y,ls,bs).
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MODULE P2.

IMPORT Lists.

PREDICATE Perm : List(Integer) * List(Integer).

DELAY Perm(x,y) UNTIL NONVAR(x) \/ NONVAR(y).

Perm([],[]).

Perm([x|y],[u|v]) <-

Del(u,[x|y],z) &

Perm(z,v).

PREDICATE Del : Integer * List(Integer) * List(Integer).

DELAY Del(_,y,z) UNTIL NONVAR(y) \/ NONVAR(z).

Del(x,[x|y],y).

Del(x,[y|z],[y|w]) <-

Del(x,z,w).

The bar commit and the one-solution commit provide programmers with powerful pruning
facilities, which should suffice for the vast majority of programming tasks. However, source-
level tools, such as program transformers and partial evaluators, have need of a more powerful
pruning operator. The reason is that the class of programs containing | is not closed under even
simple program transformations, such as unfolding. For this reason, Gödel has a more powerful
pruning operator, {. . .}_n, which includes the | and {. . .} as special cases, and which gives a
class of programs closed under the usual program transformations. This pruning operator was
introduced in [12].

To motivate the pruning operator, consider module P3, which is a variant of module P2.
Module P3 can be used to check that one list is a permutation of another list. For example, the
goal

<- Perm([1,2,3,4],[4,1,2,3]).

will produce the answer Yes.
The DELAY declaration for Perm will delay a call to it until its first argument is not a variable.

This is sufficient to ensure commitment to the desired statement. In fact, the following weaker
declaration also ensures the desired commitment.

DELAY Perm(x,y) UNTIL NONVAR(x) \/ NONVAR(y).

Similarly, the DELAY declaration for Del delays calls to it until the desired commitment is ensured.
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MODULE P3.

IMPORT Lists.

PREDICATE Perm : List(Integer) * List(Integer).

DELAY Perm(x,_) UNTIL NONVAR(x).

Perm([],[]) <-

|.

Perm([x|y],[u|v]) <-

|

Del(u,[x|y],z) &

Perm(z,v).

PREDICATE Del : Integer * List(Integer) * List(Integer).

DELAY Del(x,[u|_],_) UNTIL NONVAR(x) & NONVAR(u).

Del(x,[x|y],y) <-

|.

Del(x,[y|z],[y|w]) <-

x ~= y |

Del(x,z,w).

An important heuristic for finding good DELAY declarations to control pruning is that they
should be strong enough to avoid unexpected failure because of premature commitment to an
inappropriate statement. For example, suppose the DELAY declaration for Del was omitted. Now
consider the goal

<- Del(x,[1,2,3],y) & x = 2.

The first atom in this goal unifies with the head of the first statement and so the system could
commit to this statement. However, subsequently the call 1 = 2 will cause the goal to fail
unexpectedly. If instead the call to Del had been delayed according to the DELAY declaration for
it in P3, then the goal would have succeeded, as expected.

Now consider the program transformation task of unfolding (once) the call to Del in the second
statement for Perm in module P3. For this purpose, we first rewrite the module using the more
general commit. This is module P4. The scope of | is the formula in the body to its left. So each
| is rewritten using { and } to indicate its scope inside a statement explicitly and a label, which
is a positive integer, to indicate the scope across the statements in each definition. The actual
values of the labels in the two definitions are unimportant. It is only important that the two
commits in the definition of Perm should have the same label and that the two commits in the
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definition of Del should have the same label. In module P4, the labels have been standardized
apart in preparation for the unfolding step.

MODULE P4.

IMPORT Lists.

PREDICATE Perm : List(Integer) * List(Integer).

DELAY Perm(x,_) UNTIL NONVAR(x).

Perm([],[]) <-

{True}_1.

Perm([x|y],[u|v]) <-

{True}_1 &

Del(u,[x|y],z) &

Perm(z,v).

PREDICATE Del : Integer * List(Integer) * List(Integer).

DELAY Del(x,[u|_],_) UNTIL NONVAR(x) & NONVAR(u).

Del(x,[x|y],y) <-

{True}_2.

Del(x,[y|z],[y|w]) <-

{x ~= y}_2 &

Del(x,z,w).

Now the unfolding step at the call to Del in the second statement for Perm can be performed.
The result of this is given in module P5. The brackets {. . .} of a commit {Formula}_n indicate
the scope of the commit inside a statement. The label n indicates the scope of the commit over
the statements in a definition. When the formula Formula succeeds, all other statements in the
definition which contain a commit labelled n are pruned. The other pruning which takes place
is that only one solution is found for Formula. The commits which have been introduced into
module P5 by the unfolding step are such that an answer computed for a goal to module P5 can
also be computed for the same goal to module P4. Thus the transformation is sound for the
procedural semantics. This follows from a theorem about partial evaluation in [12]. (See theorem
3.1.)

Note that the DELAY declaration for Perm in module P5 has been strengthened compared to the
one in module P4. This is to ensure correct commitment. For example, if the DELAY declaration
for Perm in P5 is replaced by the weaker one for Perm in P4, then the goal

<- Perm([1,2,3],x) & x = [2,1,3].
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MODULE P5.

IMPORT Lists.

PREDICATE Perm : List(Integer) * List(Integer).

DELAY Perm([],_) UNTIL TRUE;

Perm([x|_],[u|_]) UNTIL NONVAR(x) & NONVAR(u).

Perm([],[]) <-

{True}_1.

Perm([x|y],[x|v]) <-

{True}_1 &

{True}_2 &

Perm(y,v).

Perm([x|y],[u|v]) <-

{True}_1 &

{x ~= u}_2 &

Del(u,y,w) &

Perm([x|w],v).

PREDICATE Del : Integer * List(Integer) * List(Integer).

DELAY Del(x,[u|_],_) UNTIL NONVAR(x) & NONVAR(u).

Del(x,[x|y],y) <-

{True}_2.

Del(x,[y|z],[y|w]) <-

{x ~= y}_2 &

Del(x,z,w).

could fail unexpectedly by committing to the second statement.
The unfolding in module P4 was carried out at an atom which was not inside the scope of the

commit in the statement. For the case when the unfolding is carried out at an atom in the scope
of all the commits in a statement (that is, the regularity condition in [12] is satisfied), a stronger
soundness result applies. This is that, for any set of answers computed by the program resulting
from the unfolding, the same set can also be computed by the original program. (See theorem
3.2 in [12].)

The one-solution commit {. . .} is regarded as a special case of the commit {. . .}_n in that {. . .}
is assumed to have a label that does not occur elsewhere in the definition in which it appears.
Another aspect of the commit worth noting is that an implementation employing negation as
failure (and variations of it) must disable all pruning inside a negated call. This ensures the
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soundness of the implementation. (See [12].)
We now describe the (top-level) syntax for statements and goals containing commits. For this,

we need to give the (top-level) syntax for a body, which may be either the body of a goal or a
statement. The grammar for a (non-empty) body is as follows.

Body −→ [CFormula(f)] <‘|’> [CFormula(f1)]
| CFormula(f)

CFormula(0) −→ <‘(’> CFormula(f) <‘)’>
| <‘{’> CFormula(f) <‘}’ [‘_’ Label]>

CFormula(2) −→ CFormula(f) <‘&’> CFormula(f1)

Condition: f ≤ 1, f1 ≤ 2.

CFormula(f) −→ Formula(f)

where the notation [. . .] indicates 0 or 1 occurrences of the included item, Label is a positive
integer, and Formula is a formula not involving commits.

Next, we describe how the bar commits and the one-solution commits are preprocessed away.
The preprocessed versions of bodies will be useful for the ground representation. According to
the above grammar, only one bar commit is allowed in a body and it must not appear inside the
scope of any other commit. So a body of the form V | W (resp., V |, | W, |) is replaced by
{V}_n & W (resp., {V}_n, {True}_n & W, {True}_n), for a suitable positive integer n. If the bar
commit is in the body of a goal, then n must be different from any other label in the goal. For bar
commits appearing in a definition, n must be the same for all bar commits in the definition and
different from the label of any other commits in the definition. Finally, any one-solution commits
are given a label unique to the goal or definition in which they appear. After this preprocessing,
all bodies contain only commits of the form {. . .}_n.

Finally, we give a somewhat more formal description of the procedural semantics of commit.
(More details for the case of SLDNF-resolution can be found in [12].) First we need to introduce
the concept of a search tree corresponding to some proof procedure. We avoid a formal definition
here, but the idea is intuitively clear. Nodes in a search tree are labelled by goals, the root node
being labelled by the top-level goal. Each node in a search tree has zero or more children, where
each child corresponds to a goal obtained from its parent by a (positive or negative) derivation
step according to the proof procedure. The definition of a search tree is deliberately left vague
since we want to encompass the concept of a search tree for as many proof procedures as possible.
We define an l-child as follows.

Definition Let T be a search tree, G0 a non-leaf node in T , and G1 a child of G0. Then G1

is an l-child of G0 if either

1. G0 contains a commit labelled l and the selected literal in G0 is in the scope of this commit,
or

2. G1 is derived from G0 using an input statement which contains a commit labelled l (after
standardisation apart of the commit labels).

G1 is an l-child of the first kind (resp., of the second kind) if G0 satisfies condition 1 (resp., 2)
above.

Note the following properties of l-children.
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1. A node can be an l-child of the first or second kind, but not both.

2. The l-children of a node are either all of the first kind or all of the second kind.

3. If one child of a node is an l-child of the first kind, then all children of the node are l-children.

4. A node can be an l-child and an m-child, where l 6= m.

The ideas of the previous definition are illustrated by module P6, for which the following is a
search tree (using SLDNF-resolution, say).

<- P
✟✟✟✟✟✟✟✟✟✙

❍❍❍❍❍❍❍❍❍❥❄
<- {Q} 1 & R <- U & {V} 2<- {S} 1 & T

❄ ❄

�
�

�
��✠

❅
❅
❅
❅❅❘

<- R <- W & Z & {V} 2<- T<- {B} 1 & T

❄
✷

Then <- {Q} 1 & R and <- {S} 1 & T are 1-children and <- U & {V} 2 is a 2-child of <- P of
the second kind. The nodes <- {B} 1 & T and <- T are 1-children of <- {S} 1 & T of the first
kind. The node <- W & Z & {V} 2 is not a 2-child of <- U & {V} 2, as the selected literal is not
in the scope of the commit.

Now we can define the concept of a pruning step, which gives the procedural meaning of the
Gödel commit.

Definition Let S be a subtree of a search tree. The tree S ′ is obtained from S by a pruning
step in S at G0 if the following conditions are satisfied.

1. S has a node G0 with distinct l-children G1 and G2, and there is an l-free node G′

2 in S
which is either equal to or below G2.

2. S ′ is obtained from S by removing the subtree of S rooted at G1.

G1 is the cut node and the pair (G2, G
′

2) is an explanation for the pruning step.
Consider the preceding search tree. We can apply a pruning step to this tree to obtain the

subtree S1
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MODULE P6.

PROPOSITION P,Q,R,S,U,B,W,Z,T,V.

P <- {Q}_1 & R.

P <- {S}_1 & T.

P <- U & {V}_2.

Q.

S <- B.

S.

U <- W & Z.

T.

R.

<- P
✟✟✟✟✟✟✟✟✟✙

❍❍❍❍❍❍❍❍❍❥
<- U & {V} 2<- {S} 1 & T

�
�

�
��✠

❅
❅

❅
❅❅❘ ❄

<- W & Z & {V} 2<- T<- {B} 1 & T

where the explanation for pruning the leftmost branch is the pair (<- {S} 1 & T, <- T). We can
apply another pruning step to S1 to obtain the subtree S2

<- P

�
�

�
��✠

❅
❅
❅
❅❅❘

<- U & {V} 2<- {S} 1 & T

❄ ❄
<- W & Z & {V} 2<- T

where the explanation for pruning the leftmost child of <- {S} 1 & T is the pair (<- T, <- T).
No further pruning is possible.

We have defined a pruning step to be the smallest amount of pruning that could take place
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at any time. However, an implementation of Gödel may apply several pruning steps together.
For example, if a pruning step at a node G0 with cut node G1 is possible because there is an
explanation (G2, G

′

2), where G1 and G2 are l-children of G0 and G′

2 is l-free, then it would also
be possible to prune all other subtrees rooted at l-children of G0 using the same explanation
(G2, G

′

2). In the case when all children of G0 are l-children, this amounts to removing the choice
point at G0. It is also possible to remove the choice points at each node on the branch to G′

2

at which the selected literal is in the scope of an l-commit. In fact, an implementation may do
pruning eagerly, in the sense that when the scope of a commit is solved the system would perform
as much pruning as is possible as a result of solving that scope.





Chapter 8

Input/Output

The Gödel input/output facilities are provided by the system modules IO, NumbersIO, FlocksIO,
ProgramsIO, ScriptsIO, and TheoriesIO. The first three modules are discussed in this chapter.
The last three are relevant for meta-programming applications and so the discussion of these is
postponed to chapter 9.

8.1 IO

The basic input/output module is IO, the export part (except for the DELAY declarations) of
which is given below. Two types, InputStream and OutputStream, are provided which are the
types of input streams and output streams, respectively. To open a file for input, the predicate
FindInput is used. Its first argument is the name of a file (given as a string) and the second
argument contains either a term of the form In(stream), where stream is the new input stream,
or the constant NotFound depending on whether the attempt to open the file was successful or
not. Similarly, FindOutput is used to open a file for output. The read predicates are Get, which
returns the ASCII code of the next character read from the open input stream, and ReadChar,
which returns a string of length 1 containing the next character read from the open input stream,
assuming the end of the stream has not yet been reached. The write predicates are Put, which
writes the character whose ASCII code is the second argument to the open output stream, and
WriteString, which writes the string of characters in the second argument to the open output
stream. The predicate EndInput closes an open input stream and EndOutput closes an open
output stream. As an example of the use of the module IO, the module DisplayFile below reads
a file as input and displays it on standard output.

Gödel’s input/output facilities do not have a declarative semantics, so it is very important
that input/output predicates are confined to as small a part of a program as possible. Let us
say a module is an input/output module if it depends upon the module IO. Then the key idea
is to have the input/output modules as high as possible, preferably at the top, of the module
hierarchy of a program. This means that most of the modules in such a program will not depend
on the input/output modules and can be understood declaratively (together possibly with some
commits). Fortunately, it is usual for the input/output modules to be near the top of the module
hierarchy of a program. In fact, a common module structure is to have just the main module of a
program importing the system input/output modules. In this case, all the other modules in the
program have a declarative semantics. Furthermore, there is a strong incentive for programmers
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EXPORT IO.

IMPORT Strings.

BASE InputStream, OutputStream, ResultOfFind.

CONSTANT StdIn : InputStream;

StdOut, StdErr : OutputStream;

NotFound : ResultOfFind.

FUNCTION In : InputStream -> ResultOfFind;

Out : OutputStream -> ResultOfFind.

PREDICATE FindInput : String * ResultOfFind;

FindOutput : String * ResultOfFind;

FindUpdate : String * ResultOfFind;

EndInput : InputStream;

EndOutput : OutputStream;

Get : InputStream * Integer;

ReadChar : InputStream * String;

Put : OutputStream * Integer;

WriteString : OutputStream * String;

NewLine : OutputStream;

Flush : OutputStream.

EXPORT DisplayFile.

IMPORT Strings.

PREDICATE Display : String.

DELAY Display(x) UNTIL GROUND(x).

% Display displays on standard output the file whose name appears in its

% argument.
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LOCAL DisplayFile.

IMPORT IO.

% PREDICATE Display : String.

Display(file) <-

FindInput(file, result) &

ProcessStream(result).

PREDICATE ProcessStream : ResultOfFind.

ProcessStream(In(stream)) <-

Get(stream, c) &

DisplayStream(stream, c) &

EndInput(stream).

ProcessStream(NotFound) <-

WriteString(StdOut, "File not found") &

NewLine(StdOut).

PREDICATE DisplayStream : InputStream * Integer.

DisplayStream(stream, c) <-

IF c ~= -1

THEN

Put(StdOut, c) &

Get(stream, c1) &

DisplayStream(stream, c1).

to adopt this kind of module structure, since it is only the modules that are not input/output
ones to which the purest forms of program transformation, declarative debugging, and so on,
apply. Since the order of input/output calls is important, an implementation should indicate in
what order such calls will be made.

8.2 NumbersIO

The system module NumbersIO provides input/output facilities for integers, rationals, and floating-
point numbers. It also provides conversion between a number and its representation as a string
which is often useful for input/output. The export part (except for the DELAY declarations) of
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NumbersIO is given below.
The predicate ReadInteger skips over layout characters to find the next token which should

be an integer. If the next token is not an integer, ReadInteger fails. If end of file has already been
reached (or if there are only layout characters before the end of file), ReadInteger succeeds with
0 in the second argument and the constant EOF in the third. If end of file has not been reached
and ReadInteger succeeds, then NotEOF is returned in the third argument. The predicates
ReadRational and ReadFloat behave similarly.

The predicates WriteInteger, WriteRational, and WriteFloat write numbers of the ap-
propriate type to an output stream. The predicates IntegerString, RationalString, and
FloatString provide conversion between numbers and their string representations. These pred-
icates are useful, for example, for user-defined procedures for reading numbers from a file.

EXPORT NumbersIO.

IMPORT IO, Numbers.

BASE FileInfo.

CONSTANT EOF, NotEOF : FileInfo.

PREDICATE ReadInteger : InputStream * Integer * FileInfo;

ReadRational : InputStream * Rational * FileInfo;

ReadFloat : InputStream * Float * FileInfo;

WriteInteger : OutputStream * Integer;

WriteRational : OutputStream * Rational;

WriteFloat : OutputStream * Float;

IntegerString : Integer * String;

RationalString : Rational * String;

FloatString : Float * String.

8.3 FlocksIO

So that a program can access a term representing a flock, Gödel provides a system module,
called FlocksIO. The export part of FlocksIO is given below. FlocksIO imports IO so that
the predicates there can be used to open and close files. The predicate GetFlock is intended
to be called with its first argument ground and instantiates the second argument to the term
representing the flock in the file with extension .flk corresponding to the input stream in the
first argument. The predicate PutFlock is intended to be called with both arguments ground.
It puts the term in the second argument into the file with extension .flk corresponding to the
output stream in the first argument. The output stream must have been found using FindOutput,
so that the term being written overwrites any existing term in this file. Note that FlocksIO is an
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input/output module so it should be handled like the module IO. In particular, it is preferable
to arrange the module structure of the program so that only its main module depends upon
FlocksIO. A program illustrating the use of FlocksIO is given in section 10.3.

EXPORT FlocksIO.

IMPORT IO, Flocks.

PREDICATE GetFlock : InputStream * Flock;

PutFlock : OutputStream * Flock.





Chapter 9

Meta-Programming

In the design of Gödel, particular attention has been paid to its meta-logical facilities. As we
have already indicated, using the ground representation, we can write in a declarative way many
important kinds of meta-programs, such as program transformers, compilers, debuggers, abstract
interpreters, program synthesizers, and theorem provers. We now turn attention to the the various
modules which provide meta-programming facilities via the ground representation.

9.1 Syntax

The ground representation is a scheme for representing object programs, modules, goals, theories,
declarations, terms, and so on, as terms in a meta-language. The details of the ground repre-
sentation are not made explicit. (For background on the ground representation, see [3], [11], or
[10], and for a detailed discussion of a particular implementation of the ground representation
for Gödel itself, see [4].) Instead, following an abstract data type approach, Gödel provides, via
the system modules Syntax, Programs, Scripts, and Theories, a set of predicates which allow
a meta-program to access and manipulate terms representing object expressions. The constants
and functions actually used in the representation are hidden in the local part of these modules.
However, we emphasize strongly that, even though the details of the ground representation are
hidden, all the predicates exported by these modules have declarative definitions.

Gödel supports the ground representation of (object) programs, scripts, and theories. The
first of these is given by the module Programs, the second by the module Scripts, and the
third by the module Theories. We discuss these three modules in subsequent sections. In this
section, we discuss the module Syntax which provides some facilities for the manipulation of the
representations of (object) expressions common to all three of these ground representations.

First, Syntax imports all the symbols exported by the modules Integers, Lists, and Strings.
It also declares (amongst others) the following bases, which are required by the ground represen-
tation of expressions of various kinds.

BASE Name, Type, Term, Formula, TypeSubst, TermSubst, VarTyping.

Name is the type of a term representing the name of a symbol, Type is the type of a term
representing a type, Term is the type of a term representing a term, Formula is the type of a
term representing a formula, TypeSubst is the type of a term representing a type substitution,
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TermSubst is the type of a term representing a term substitution, and VarTyping is the type of
a term representing a variable typing.

Note that two kinds of substitutions need to be represented. The first is the usual term
substitution consisting of a set of term bindings, which are pairs of variables and terms. The
other kind is a type substitution consisting of a set of type bindings, which are pairs of parameters
and types. All the usual operations on term substitutions are also provided for type substitutions.
A variable typing is a set of bindings where each binding consists of a variable together with the
type assigned to that variable.

We now discuss in some detail a representative selection of predicates provided by Syntax.
The complete export part of Syntax is given in chapter 13.

The first collection of predicates is mainly concerned with the representation of the connectives
and quantifiers.

PREDICATE And : Formula * Formula * Formula;

All : List(Term) * Formula * Formula;

Commit : Integer * Formula * Formula.

And is intended to be true when its first and second arguments are the representations of formulas,
and its third argument is the representation of the formula which is the conjunction of the formulas
in the first and second arguments. All is intended to be true when its first argument is a list
of the representations of variables, its second argument is the representation of a formula, and
its third argument is the representation of the formula which is obtained by taking the universal
quantification over the set of variables in the first argument of the formula in the second argument.
Commit is intended to be true when its first argument is a commit label, its second argument is the
representation of a formula, and its third argument is the representation of the formula obtained
by enclosing the formula in the second argument using commits with this label.

The next four predicates are concerned with the representation of variables and parameters.

PREDICATE Variable : Term;

VariableName : Term * String * Integer;

Parameter : Type;

ParameterName : Type * String * Integer.

Variable is intended to be true when its argument is the representation of a variable. Variable
can only be used to check whether or not its argument is the representation of a variable. Variable
names have the form name_n, where name is the root of the name of the variable and the non-
negative integer n is called the index of the variable.1 VariableName is intended to be true when
its first argument is the representation of a variable, its second argument is the root of the name
of the variable, and its third argument is the index of the variable. VariableName is used to
create the representations of new variables and also to split a variable name into its root and
index. Parameter names are analogous to variable names and have a root and index. Parameter
is intended to be true when its argument is the representation of a parameter. ParameterName

1As an implementation point, we note that variable names of the form name n allow a convenient and efficient
way of creating new variables, renaming variables, and so on, both for the user and the system. Furthermore, an
implementation must give an index to all object variables, even those not created by VariableName. This greatly
increases the usefulness of the predicates FormulaMaxVarIndex and TermMaxVarIndex (see chapter 13), which are
often needed for renaming.
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is intended to be true when its first argument is the representation of a parameter, its second
argument is the root of the name of the parameter, and its third argument is the index of the
parameter.

The next collection of predicates is mainly concerned with ensuring types, terms, and formulas
have certain properties.

PREDICATE NonVarTerm : Term;

Atom : Formula;

Statement : Formula;

EmptyFormula : Formula.

NonVarTerm is intended to be true when its argument is the representation of a non-variable
term. Atom is intended to be true when its argument is the representation of an atom. Statement
is intended to be true when its argument is the representation of a statement. EmptyFormula is
intended to be true when its argument is the representation of the empty formula.

The next two predicates are used to construct and pull apart the representations of terms and
atoms.

PREDICATE FunctionTerm : Term * Name * List(Term);

PredicateAtom : Formula * Name * List(Term).

FunctionTerm is intended to be true when its first argument is the representation of a non-opaque
term with a function at the top-level, its second argument is the representation of the name of
this function, and its third argument is the list of representations of the top-level subterms of this
term. A term is opaque if it is a constant declared in the local part of a closed module or it has
a top-level function declared in the local part of a closed module; otherwise, it is non-opaque. A
predicate OpaqueTerm is provided which can be used to find out whether a term is opaque or not.
Opaque types and atoms are defined analogously. PredicateAtom is intended to be true when
its first argument is the representation of a non-opaque atom with a predicate at the top-level,
its second argument is the representation of the name of this predicate, and its third argument is
the list of representations of the top-level terms of this atom.

The final collection of predicates is useful for a variety of standard meta-programming tasks.

PREDICATE RestrictSubstToTerm : Term * TermSubst * TermSubst;

BindingToTermSubst : Term * Term * TermSubst;

BindingInTypeSubst : TypeSubst * Type * Type;

UnifyTerms : Term * Term * TermSubst * TermSubst;

RenameFormulas : List(Formula) * List(Formula) * List(Formula);

VariantFormulas : List(Formula) * List(Formula);

Derive : Formula * Formula * Formula * Formula * Formula *

TermSubst * Formula.

RestrictSubstToTerm is intended to be true when its first argument is the representation of
a term, its second argument is the representation of a term substitution, and its third argu-
ment is the representation of this term substitution restricted to the variables in this term.
BindingToTermSubst is intended to be true when its first argument is the representation of a
variable, its second argument is the representation of a term, and its third argument is the rep-
resentation of the term substitution containing just the binding in which this variable is bound
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to this term. BindingInTypeSubst is intended to be true when its first argument is the repre-
sentation of a type substitution, its second argument is the representation of a parameter in a
binding in this substitution, and its third argument is the representation of the type to which this
parameter is bound in this binding. UnifyTerms is intended to be true when its first and second
arguments are the representations of terms, its third argument is the representation of a term
substitution, and its fourth argument is the representation of the term substitution obtained by
composing the term substitution in the third argument with a specific, unique mgu for the terms
which are obtained by applying the term substitution in the third argument to the terms in the
first two arguments. RenameFormulas is intended to be true when its first and second arguments
are lists of representations of formulas and its third argument is the list of representations of the
formulas obtained by a specific, unique renaming of the free variables of the formulas in the second
argument with the property that they become distinct from the free variables in the formulas in
the first argument. VariantFormulas is intended to be true when its first argument is a list of
representations of formulas and its second argument is a list of representations of formulas which
are variants of the formulas in the first argument. Derive is intended to be true when its first
argument is the representation of the head of a normal resultant [10], its second argument is the
representation of the body to the left of selected atom in the resultant, its third argument is the
representation of the selected atom in the resultant, its fourth argument is the representation of
the body to the right of selected atom in the resultant, its fifth argument is the representation of
a normal statement whose head unifies with the selected atom in the resultant, its sixth argument
is the representation of a specific, unique mgu of the head of the selected atom and the head of
the statement, and its seventh argument is the representation of the derived resultant.

As an illustration of the use of the above meta-level predicates, we give below a definition of the
predicate MyUnifyTerms, which is essentially a special case of the system predicate UnifyTerms,
using other predicates provided by Syntax.

EXPORT Unify.

IMPORT Syntax.

PREDICATE MyUnifyTerms :

Term % Representation of a term.

* Term % Representation of a term.

* TermSubst. % Representation of an mgu for these terms.
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LOCAL Unify.

% PREDICATE MyUnifyTerms : Term * Term * TermSubst.

MyUnifyTerms(t,t1,s) <-

EmptyTermSubst(e) &

UnifyingSubst(t,t1,e,s).

PREDICATE UnifyingSubst : Term * Term * TermSubst * TermSubst.

UnifyingSubst(t,t1,s,s1) <-

ApplySubstToTerm(t,s,ts) &

ApplySubstToTerm(t1,s,t1s) &

UnifyingSubst1(ts,t1s,s,s1).

PREDICATE UnifyingSubst1 : Term * Term * TermSubst * TermSubst.

UnifyingSubst1(t,t,s,s).

UnifyingSubst1(t1,v,s,s1) <-

Variable(v) &

NotOccur(v,t1) &

BindingToTermSubst(v,t1,r) &

ComposeTermSubsts(r,s,s1).

UnifyingSubst1(v,t1,s,s1) <-

Variable(v) &

NotOccur(v,t1) &

BindingToTermSubst(v,t1,r) &

ComposeTermSubsts(r,s,s1).

UnifyingSubst1(t,t1,s,s1) <-

FunctionTerm(t,x,tas) &

FunctionTerm(t1,x,tas1) &

UnifyingSubst2(tas,tas1,s,s1).

PREDICATE UnifyingSubst2 : List(Term) * List(Term) * TermSubst * TermSubst.

UnifyingSubst2([],[],s,s).

UnifyingSubst2([t|ts],[t1|ts1],s,s1) <-

UnifyingSubst(t,t1,s,s2) &

UnifyingSubst2(ts,ts1,s2,s1).
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PREDICATE NotOccur : Term * Term.

NotOccur(s,t) <-

s ~= t &

ALL [t1] (NotOccur(s,t1) <- Subterm(t,t1)).

PREDICATE Subterm : Term * Term.

Subterm(t,t1) <-

FunctionTerm(t,_,ts) &

Member(t1,ts).

9.2 Programs

We will turn shortly to a discussion of the predicates provided by Programs. But before this, we
need to introduce the concepts of the flat name of a symbol and the flat form of a program.

For clarity in this discussion, what we called before the name of a symbol, we will now call
the declared name of the symbol. Since module condition M3 is enforced, a symbol can be
uniquely identified by the quadruple consisting of the name of the module in which the symbol is
declared, the declared name of the symbol, its category, and its arity. (For bases, constants, and
propositions, the arity is extraneous, of course. We include it in these cases for uniformity.) Such
a quadruple (M, S, C, A), where M is the name of a module, S is the declared name of a symbol
which is declared in the module M, C is the category of S, and A is the arity of S is called the flat
name of the symbol.

The flat form of a program P is the “program” obtained from P by replacing each occurrence
of the declared name of a symbol in P by the flat name of the symbol. The flat language of a
program P is the polymorphic many-sorted language given by the set of language declarations
in the flat form of P. The flat language of a module M wrt a program P is the subset of the flat
language of P given by the set of language declarations of all symbols which have a language
declaration in the language of M wrt P. The flat export language of a module M wrt a program P is
the subset of the flat language of P given by the set of language declarations of all symbols which
have a language declaration in the export language of M wrt P.

Note carefully that, for the ground representation, it is the flat form of a program which is
represented rather than the program itself. The reason is that the flat form of a program is
much more convenient because it does not have any name clashes. Hence, such things as explicit
derivation steps in an interpreter can be achieved by taking the current resultant [10], choosing an
appropriate input statement, and doing a derivation step, without having to be concerned with
name clashes.

Another point to note is that bar commits and one-solution commits are preprocessed away,
as explained in section 7.2, so that only the representations of commits with labels are present
in the ground representation of a program. Also module declarations, language declarations,
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control declarations, and statements appear in some definite, but unspecified, order in the ground
representation of a program. The only time this order is visible to a programmer is when the
predicate DefinitionInProgram is called. This predicate returns the collection of statements in
the definition of a proposition or predicate in this order.

A typical meta-program is a debugger. Taking the declarative debugger in [15, page 124] as
an example, we see that the debugger switches between manipulating formulas in the bodies of
program statements and running goals to the program being debugged. The manipulation of the
formulas takes place in the flat language of the appropriate module of the program. The running
of a goal takes place in the flat language of the program.

The module Programs imports the module Syntax. It also declares the following bases.

BASE Program, ModulePart, Condition.

Program is the type of a term representing (the flat form of) a program. ModulePart is the type
of constants representing the keywords EXPORT, LOCAL, CLOSED, and MODULE. Thus there are four
constants of type ModulePart with declarations as follows.

CONSTANT Export, Local, Closed, Module : ModulePart.

Condition is the type of a term representing a condition in a DELAY declaration.
We now discuss in some detail a representative selection of predicates provided by Programs,

the complete export part of which is given in chapter 13. The first of these predicates is
TermInProgram, which has the following declaration.

PREDICATE TermInProgram : Program * VarTyping * Term * Type * VarTyping.

TermInProgram is intended to be true when its first argument is the representation of a program,
the second argument is the representation of a variable typing in the flat language of this program,
its third argument is the representation of a term in this language, the fourth is the representation
of the type of this term with respect to this variable typing, and the fifth is the representation of
the variable typing obtained by combining the variable typing in the second argument with the
types of all variables occurring in the term.

The next collection of predicates in Programs is concerned with the representation of types,
terms, and formulas.

PREDICATE StringToProgramType : Program * String * String * List(Type);

StringToProgramTerm : Program * String * String * List(Term);

StringToProgramFormula : Program * String * String * List(Formula).

StringToProgramType is intended to be true when its first argument is the representation of a
program, its second argument is the name of a module in this program, its third argument is a
string, and its fourth argument is the list (in a definite order) of representations of types in the flat
language of this module wrt this program whose string representation is the third argument. There
may be more than one such type due to overloading. Thus the call StringToProgramType(P,
M,"List(Integer)",x), where P is a term representing a program, M is the name of a module
in this program, and the constructor List and the base Integer are in the language of M
wrt P, would bind x to the list consisting of the term representing the type List(Integer)

(assuming no overloading). Similarly, StringToProgramTerm is intended to be true when its first
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argument is the representation of a program, its second argument is the name of a module in
this program, its third argument is a string, and its fourth argument is the list (in a definite
order) of representations of terms in the flat language of this module wrt to this program whose
string representation is the third argument. Thus the call StringToProgramTerm(P,M,"v1",x),
where P is a term representing a program and M is the name of a module in this program,
would bind x to the list consisting of the term representing the variable v1. Note that the
ground representation represents actual names of variables, which can be recovered by calling the
companion predicate ProgramTermToString (see chapter 13) with the first argument instantiated
to a term representing a program, the second argument to the name of a module in this program,
the third argument to a variable, and the fourth argument instantiated to the term representing
the variable whose name is to be recovered. StringToProgramFormula is intended to be true
when its first argument is the representation of a program, its second argument is the name
of a module in this program, its third argument is string, and its fourth argument is the list
(in a definite order) of representations of formulas in the flat language of this module wrt this
program whose string representation is the third argument. StringToProgramFormula provides
a convenient way of giving a meta-program the representation of a goal to an object program.
For example, the call StringToProgramFormula(P,M,"<-Append(x,y,[1,2,3])",z), where P
is a term representing a program and M is the name of a module in this program, would bind z

to the list consisting of the term representing the goal <- Append(x,y,[1,2,3]).
Of course, facilities for creating the representation of object programs have also to be provid-

ed. Since object programs are usually of a substantial size, Gödel handles the creation of their
representation differently from the representation of types, terms, and so on. The discussion of
how this is done is postponed to later in this section.

The next collection of predicates is concerned with modules and accessing statements in open
modules.

PREDICATE OpenModule : Program * String;

DeclaredInOpenModule : Program * String * Formula;

StatementInModule : Program * String * Formula;

StatementMatchAtom : Program * String * Formula * Formula.

OpenModule is intended to be true when its first argument is the representation of a program and
its second argument is the name of an open module in this program. DeclaredInOpenModule is
intended to be true when its first argument is the representation of a program, its second argument
is the name of an open module in this program, and its third argument is the representation of
an atom in the flat language of this program whose proposition or predicate is declared in this
module. StatementInModule is intended to be true when its first argument is the representation
of a program, its second argument is the name of an open module in this program, and its third
argument is the representation of a statement in this module. StatementMatchAtom is intended
to be true when its first argument is the representation of a program, its second argument is the
name of an open module in this program, its third argument is the representation of an atom in
the flat language of this program, and its fourth argument is the representation of a statement in
this module whose proposition or predicate in the head is the same as the proposition or predicate
in this atom.

For the sake of uniformity, a statement with an empty body is represented, not as an atom,
but as a formula with top-level connective <- and an empty formula to the right of the <-. Thus



9.2. PROGRAMS 97

to access the head or body of a statement, StatementInModule or StatementMatchAtom are first
used to access the statement and then IsImpliedBy from Syntax is used to access the head or
body. An empty body can be checked for using EmptyFormula from Syntax.

The next three predicates are concerned with language and import declarations in a program.

PREDICATE ConstructorInModule : Program * String * ModulePart * Name *

Integer * String;

ConstantInModule : Program * String * ModulePart * Name * Type *

String;

ImportInModule : Program * String * ModulePart * String.

ConstructorInModule is intended to be true when its first argument is the representation of
a program, its second argument is the name of a module in this program, its third argument
is the representation of a part keyword of this module which cannot be the local part if this
module is closed, its fourth argument is the representation of the flat name of a constructor ac-
cessible to this part of this module, its fifth argument is the arity of this constructor, and its
sixth argument is the name of the module in which the constructor is declared. Thus the call
ConstructorInModule(P, "M6", Module, N, 1, "Lists"), where P is the term representing
the program {M6, M5, Lists, Integers} and N is the term representing the flat name of List,
would succeed. ConstantInModule is intended to be true when its first argument is the repre-
sentation of a program, its second argument is the name of a module in this program, its third
argument is the representation of a part keyword of this module which cannot be the local part
if this module is closed, its fourth argument is the representation of the flat name of a constant
accessible to this part of this module, its fifth argument is the representation of the type of this
constant, and its sixth argument is the name of the module in which the constant is declared.
ImportInModule is intended to be true when its first argument is the representation of a pro-
gram, its second argument is the name of a module in this program, its third argument is the
representation of a part keyword of this module which cannot be the local part if this module
is closed, and its fourth argument is the name of a module appearing in an IMPORT declaration
in this part of this module. Note that none of these predicates gives access to declarations or
statements in the local part of a closed module.

The next two predicates are needed for dynamic meta-programming.

PREDICATE InsertProgramBase : Program * String * ModulePart * Name * Program;

DeleteStatement : Program * String * Formula * Program.

InsertProgramBase is intended to be true when its first argument is the representation of a
program, its second argument is the name of an open module in this program, its third argument
is the representation of a part keyword of this module, its fourth argument is the representation
of the flat name of a base not declared in this part of this module, and its fifth argument is the
representation of a program which differs from the program in the first argument only in that it
also contains the declaration of this base in this part of this module. DeleteStatement is intended
to be true when its first argument is the representation of a program, its second argument is the
name of an open module in this program, its third argument is the representation of a statement
in the flat language of this module wrt this program appearing in this module, and its fourth
argument is the representation of a program which differs from the program in the first argument
only in that it does not contain this statement in this part of this module.

The final two predicates are concerned with running goals for a program.
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PREDICATE Succeed : Program * Formula * TermSubst;

Fail : Program * Formula.

Succeed is intended to be true when the first argument is the representation of a program, its
second argument is the representation of the body of a goal in the flat language of this program,
and its third argument is the representation of a computed answer for this goal and the flat form
of this program. The predicate Succeed is the Gödel equivalent of the standard demo predicate.
Note that, in particular, Succeed can be used to run goals containing predicates in the export
parts of closed modules. Fail is intended to be true when its first argument is the representation
of a program and its second argument is the representation of the body of a goal in the flat
language of this program such that this goal and the flat form of this program have a finitely
failed search tree. Note that Succeed and Fail (and their companions SucceedAll, Compute,
and ComputeAll) are the only predicates in Programs which have access to statements in closed
modules.

Next, we discuss how Gödel handles the creation of the ground representation of object pro-
grams. There are two utilities, program-compile and program-decompile. The command

program-compile Main

takes the program with main module Main in the current directory, produces the ground repre-
sentation of this program, which is a term of type Program, and puts this term into a file called
Main.prm in the current directory, overwriting any previously existing file with this name. The
command

program-decompile Main

finds in the current directory the file Main.prm which contains a term of type Program represent-
ing an object program, creates the user-defined modules of this object program, and puts files
containing these modules in the current directory, overwriting any previously existing files with
the same names. The original files are saved with a .old extension.

As an example of the use of the module Programs, we give below a module containing the
predicate RemoveAll, which removes statements whose heads unify with a given atom.

9.3 ProgramsIO

So that a meta-program can access a term representing a program, Gödel provides a system
module, called ProgramsIO, the export part of which is given below. ProgramsIO imports IO

so that the predicates there can be used to open and close files. The predicate GetProgram is
intended to be called with its first argument ground and instantiates the second argument to the
term representing the program in the file with extension .prm corresponding to the input stream
in the first argument. The predicate PutProgram is intended to be called with both arguments
ground. It puts the term in the second argument into the file with extension .prm corresponding
to the output stream in the first argument. The output stream must have been found using
FindOutput, so that the term being written overwrites any existing term in this file. Note that
ProgramsIO is an input/output module so it should be handled like the module IO. In particular,
it is preferable to arrange the module structure of the meta-program so that only its main module
depends upon ProgramsIO.
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EXPORT Dynamic.

IMPORT Programs.

PREDICATE RemoveAll :

Program % The representation of a program P.

* String % The name of an open module in P.

* Formula % The representation of an atom in the flat language of

% this module wrt P.

* Program. % The representation of the program obtained from P by

% deleting all statements in this module whose heads unify

% with this atom (after standardization apart).

DELAY RemoveAll(x,y,z,_) UNTIL GROUND(x) & GROUND(y) & GROUND(z).

PREDICATE Remove :

Program % The representation of a program P.

* String % The name of an open module in P.

* Formula % The representation of an atom in the flat language of

% this module wrt P.

* Program. % The representation of the program obtained from P by

% deleting a statement in this module whose head unifies

% with this atom (after standardization apart).

DELAY Remove(x,y,z,_) UNTIL GROUND(x) & GROUND(y) & GROUND(z).

9.4 Scripts

The module Scripts discussed in this section is a rather specialised meta-programming module
whose main purpose is to support partial evaluation. We begin by explaining the need for such
a module.

Partial evaluation and module systems do not fit easily together. The reason for this is that
the partial evaluation process naturally “promotes” symbols to a module higher in the module
hierarchy than where they are accessible and thus the module system is broken. A natural solution
to this problem is to flatten out the module structure of a program before any partial evaluation
takes place. We are thus led to the concept of a script which is essentially the flat form of a
program with the module structure removed. We now turn to the appropriate definitions.

A standard script is what is obtained by removing all module declarations from the flat form of
a program and concatenating what remains of the modules making up the program. The program
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LOCAL Dynamic.

% PREDICATE RemoveAll : Program * String * Formula * Program.

RemoveAll(program,module,atom,new_program) <-

IF SOME [program1] Remove(program,module,atom,program1)

THEN

RemoveAll(program1,module,atom,new_program)

ELSE

new_program = program.

% PREDICATE Remove : Program * String * Formula * Program.

Remove(program,module,atom,new_program) <-

StatementMatchAtom(program,module,atom,statement) &

IsImpliedBy(head,_,statement) &

RenameFormulas([head],[atom],[renamed_atom]) &

EmptyTermSubst(empty_subst) &

UnifyAtoms(head,renamed_atom,empty_subst,_) &

DeleteStatement(program,module,statement,new_program).

EXPORT ProgramsIO.

IMPORT IO, Programs.

PREDICATE GetProgram : InputStream * Program.

DELAY GetProgram(x,_) UNTIL GROUND(x).

PREDICATE PutProgram : OutputStream * Program.

DELAY PutProgram(x,y) UNTIL GROUND(x) & GROUND(y).
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from which the script is obtained is called the associated program and the script is called the
associated script (for this program). The predicate ProgramToScript discussed below performs
this operation. More generally, a script is what is obtained from a standard script by a (possibly
empty) sequence of applications of the insert and delete predicates in the module Scripts (which
we discuss below). Thus scripts do not have a fully independent existence but instead can only be
created initially from a program and then can only be modified in the restricted ways allowed by
the insert and delete predicates. Note also that scripts do not have a textual format as programs
do – they only exist in “flattened” form.

A script is divided into two parts. The closed part of a script consists of (the flattened forms of)
all language declarations, control declarations, and statements which appeared in the local parts
of the closed modules of the associated program from which the script was originally constructed.
The open part of a script is the complement in the script of the closed part. Note that only the
open part of a script can be modified.

There are several languages associated with a script. The language of a script is the polymor-
phic many-sorted language given by all the language declarations in the script. The language of
a script is naturally “flat”, but we omit this qualifier since scripts do not exist in non-flattened
form. The open language of a script is the sublanguage of the language of the script given by the
declarations which appear in the open part of the script. The goal language of a standard script
is the (flattened form of) the goal language of the associated program. For a script in general,
the goal language is modified as follows. Any symbol inserted into the script is added to the goal
language of the script. If a symbol which appears in the goal language is deleted from the script,
then this symbol is also deleted from the goal language.

Now let us turn to the module Scripts itself. First, Scripts imports Programs into its export
part. Next, we describe a representative collection of predicates in Scripts.

The first predicate ProgramToScript has the following declaration.

PREDICATE ProgramToScript : Program * Script.

ProgramToScript is intended to be true when its first argument is the representation of a program
and its second argument is the representation of the associated script obtained from this program.
This predicate has a DELAY declaration which requires the first argument be given, so that it can
only be used to construct the associated script from the given program (or check a given script
is associated with the given program). Typically, ProgramToScript would be used during the
running of a partial evaluator to produce a standard script from the program to be partially
evaluated. The appropriate resultants would be produced by the partial evaluator which would
then replace (some of) the statements in the standard script. This modified script is now the
partially evaluated form of the program and can be script compiled by the system and run
(analogously to the way programs are compiled and run). Legal goals to the script are goals
whose flattened form is a formula in the goal language of the script.

The next two predicates are concerned with accessing the declarations of symbols and state-
ments in a script.

PREDICATE BaseInScript : Script * Name;

StatementInScript : Script * Formula.

BaseInScript is intended to be true when its first argument is the representation of a script and
its second argument is the representation of the flat name of a base in the open language of the
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script. StatementInScript is intended to be true when its first argument is the representation
of a script and its second argument is the representation of a statement in the open part of this
script.

Finally, we give two predicates needed for dynamic meta-programming.

PREDICATE DeleteScriptProposition : Script * Name * Script;

InsertStatement : Script * Formula * Script.

DeleteScriptProposition is intended to be true when its first argument is the representation of
a script, its second argument is the representation of the flat name of a proposition whose module
name component is not the name of a closed module and which is declared in the open part of
this script, and its third argument is the representation of a script which differs from the script
in the first argument only in that it does not contain the declaration of this proposition in its
open part. InsertStatement is intended to be true when its first argument is the representation
of a script, its second argument is the representation of a statement in the open language of this
script, and its third argument is the representation of a script which differs from the script in the
first argument only in that it also contains this statement in the open part of the script.

For a more detailed description of the use of the meta-programming modules, including
Scripts, for partial evaluation, the reader is referred to [8] and [9]. Many important issues
relevant to partial evaluation, such as the use of the ground representation and self-applicability,
are discussed in these two papers.

9.5 ScriptsIO

To allow a meta-program to access a term representing a script, Gödel provides a system module,
called ScriptsIO. The predicate GetScript is intended to be called with its first argument
ground and instantiates the second argument to the term representing the script in the file with
extension .scr corresponding to the input stream in the first argument. The predicate PutScript
is intended to be called with both arguments ground. It puts the term in the second argument
into the file with extension .scr corresponding to the output stream in the first argument. The
output stream must have been found using FindOutput, so that the term being written overwrites
any existing term in this file.

EXPORT ScriptsIO.

IMPORT IO, Scripts.

PREDICATE GetScript : InputStream * Script.

DELAY GetScript(x,_) UNTIL GROUND(x).

PREDICATE PutScript : OutputStream * Script.

DELAY PutScript(x,y) UNTIL GROUND(x) & GROUND(y).
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9.6 Theories

The ground representation in this section is a scheme for representing object (many-sorted) the-
ories, theorems, declarations, terms, and so on, as terms in a meta-language. A theory is like the
local part of a module having only a local part, except that it does not contain conditionals, com-
mits, or control declarations, and it contains arbitrary first order formulas instead of statements.
A theory can import system modules.

A typical application for the system module Theories could be a program synthesis system.
For such a system, the specification for a program would be expressed as a theory, which perhaps
imported some system modules. Then a meta-program would perform transformation on this
theory until it took the form of (essentially) a module. After further modification (for example,
adding control information and/or employing conditionals), the synthesized program would result.

Before we turn to the details of the module Theories, we give some definitions. The language
of a theory is the polymorphic many-sorted language given by the language declarations of all
symbols accessible to the theory. The flat form of a theory T is the “theory” obtained from
T by replacing each occurrence of the declared name of a symbol in T by the flat name of the
symbol. The flat language of a theory is the polymorphic many-sorted language obtained from the
language of the theory by replacing the declared name of each symbol appearing in a declaration
by its flat name.

The module Theories imports the module Syntax. It also declares the following base.

BASE Theory.

Theory is the type of a term representing (the flat form of) an (object) theory.
We now discuss in some detail a representative selection of predicates provided by Theories.

The complete export part of Theories is given in chapter 13. The first of the predicates provided
by Theories which we discuss here is TermInTheory, which has the following declaration.

PREDICATE TermInTheory : Theory * VarTyping * Term * Type * VarTyping.

TermInTheory is intended to be true when its first argument is the representation of a theory, the
second argument is the representation of a variable typing in the flat language of this theory, its
third argument is the representation of a term in this language, the fourth is the representation
of the type of this term with respect to this variable typing, and the fifth is the representation of
the variable typing obtained by combining the variable typing in the second argument with the
types of all variables occurring in the term.

The next collection of predicates in Theories is concerned with the representation of types
and formulas.

PREDICATE StringToTheoryType : Theory * String * List(Type);

StringToTheoryFormula : Theory * String * List(Formula).

StringToTheoryType is intended to be true when its first argument is the representation of a
theory, its second argument is a string, and its third argument is the list (in a definite order)
of representations of types in the language of this theory whose string representation is the
second argument. Thus the call StringToTheoryType(T,"Pair(Person)",x), where T is a
term representing a theory, and the constructor Pair and the base Person are in the language of
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T, would bind x to the list consisting of the term representing the type Pair(Person) (assuming
no overloading). StringToTheoryFormula is intended to be true when its first argument is the
representation of a theory, its second argument is a string, and its third argument is the list
(in a definite order) of representations of formulas in the language of this theory whose string
representation is the second argument.

The next predicate is concerned with accessing axioms in theories.

PREDICATE AxiomInTheory : Theory * Formula.

AxiomInTheory is intended to be true when its first argument is the representation of a theory
and its second argument is the representation of an axiom in this theory.

The next two predicates are concerned with language declarations in a theory.

PREDICATE ConstructorInTheory : Theory * Name * Integer * String;

ConstantInTheory : Program * Name * Type * String.

ConstructorInTheory is intended to be true when its first argument is the representation of a
theory, its second argument is the representation of the flat name of a constructor accessible to
this theory, its third argument is the arity of this constructor, and its fourth argument is the
name of the theory or the module in which this constructor is declared. ConstantInTheory is
intended to be true when its first argument is the representation of a theory, its second argument
is the representation of the flat name of a constant accessible to this theory, its third argument is
the representation of the type of this constant, and its fourth argument is the name of the theory
or the module in which this constant is declared.

The next two predicates are needed for dynamic meta-programming.

PREDICATE InsertTheoryBase : Theory * Name * Theory;

DeleteAxiom : Theory * Formula * Theory.

InsertTheoryBase is intended to be true when its first argument is the representation of a
theory, its second argument is the representation of the flat name of a base not declared in this
theory, and its third argument is the representation of a theory which differs from the theory
in the first argument only in that it also contains the declaration of this base. DeleteAxiom is
intended to be true when its first argument is the representation of a theory, its second argument
is the representation of a formula in the flat language of this theory in this theory, and its third
argument is the representation of a theory which differs from the theory in the first argument
only in that it does not contain this formula as an axiom.

The final predicate is concerned with proving theorems.

PREDICATE Prove : Theory * Formula.

Prove is intended to be true when the first argument is the representation of a theory and its
second argument is the representation of a theorem of this theory.

Next, we discuss how Gödel handles the creation of the ground representation of theories.
There are two utilities, theory-compile and theory-decompile. The command

theory-compile Name
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takes the theory with name Name in the current directory, produces the ground representation of
this theory, which is a term of type Theory, and puts this term into a file called Name.thy in the
current directory, overwriting the contents of any previously existing file with this name. The
command

theory-decompile Name

finds in the current directory the file Name.thy which contains a term of type Theory representing
a theory, creates the corresponding theory, and puts a file containing this theory in the current
directory, overwriting any previously existing file with the same name. The original file is saved
with a .old extension.

9.7 TheoriesIO

So that a meta-program can access a term representing a theory, Gödel provides a system module,
called TheoriesIO. TheoriesIO imports IO so that the predicates there can be used to open and
close files. The predicate GetTheory is intended to be called with its first argument ground and
instantiates the second argument to the term representing the theory in the file with extension
.thy corresponding to the input stream in the first argument. The predicate PutTheory is
intended to be called with both arguments ground. It puts the term in the second argument into
the file with extension .thy corresponding to the output stream in the first argument. The output
stream must have been found using FindOutput, so that the term being written overwrites any
existing term in this file.

EXPORT TheoriesIO.

IMPORT IO, Theories.

PREDICATE GetTheory : InputStream * Theory.

DELAY GetTheory(x,_) UNTIL GROUND(x).

PREDICATE PutTheory : OutputStream * Theory.

DELAY PutTheory(x,y) UNTIL GROUND(x) & GROUND(y).





Chapter 10

Example Programs

In this chapter, we give programs to further illustrate the Gödel programming style.

107
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10.1 Fibonacci

The first example program is an iterative Fibonacci program. Given the first argument, Fib finds
the Fibonacci number having rank equal to the first argument. Fib can be run in reverse to find
the rank of a Fibonacci number. It can also be run with both arguments variables to generate all
Fibonacci numbers and their ranks. For example, the goal

<- Fib(235,y).

gives the answer

y = 5789092068864820527338372482892113982249794889765

the goal

<- Fib(x,5789092068864820527338372482892113982249794889765).

gives the answer

x = 235

and the goal

<- Fib(x,y).

gives the answers

x = 0

y = 0

x = 1

y = 1

x = 2

y = 1

x = 3

y = 2

x = 4

y = 3

x = 5

y = 5

and so on.
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MODULE Fibonacci.

IMPORT Integers.

PREDICATE Fib : Integer * Integer.

% Fib(k,n) <-> n is the Fibonacci number F_{k} of rank k.

Fib(0,0).

Fib(1,1).

Fib(k,n) <-

k > 1 &

FibIt(k-2,1,1,n).

PREDICATE FibIt : Integer * Integer * Integer * Integer.

% FibIt(k,f,g,n) <-> n = F_{k} * f + F_{k+1} * g.

FibIt(0,_,g,g).

FibIt(k,f,g,n) <-

k > 0 &

g < n &

FibIt(k-1,g,f+g,n).
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10.2 WolfGoatCabbage

The next program illustrates the use of extensional set terms. It is a solution of the well-known
wolf-goat-cabbage problem, as described in [19, pages 285–287]. The module Search provides a
depth-first state-transition search framework for problem solving, similar to the one in [19, page
285] and adapted here for the wolf-goat-cabbage problem.

The program is invoked with the goal

<- Run(x).

and produces the answers

x =

[LeftToRight({Farmer,Goat}),RightToLeft({Farmer}),LeftToRight({Cabbage,Farmer}),

RightToLeft({Farmer,Goat}),LeftToRight({Farmer,Wolf}),RightToLeft({Farmer}),

LeftToRight({Farmer,Goat})]

x =

[LeftToRight({Farmer,Goat}),RightToLeft({Farmer}),LeftToRight({Farmer,Wolf}),

RightToLeft({Farmer,Goat}),LeftToRight({Cabbage,Farmer}),RightToLeft({Farmer}),

LeftToRight({Farmer,Goat})].
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MODULE Search.

% A depth-first state-transition search framework for problem solving, similar

% to the one on page 285 of Sterling and Shapiro, The Art of Prolog. It is used

% here to solve the wolf-goat-cabbage problem, also described in Sterling and

% Shapiro, pages 285-287.

IMPORT Lists, WolfGoatCabbage.

PREDICATE Solve : State * List(State) * List(Move).

Solve(current_state, _, []) <-

Final(current_state).

Solve(current_state, history, [move|moves]) <-

Applicable(move, current_state) &

ApplyMove(move, current_state, new_state) &

Legal(new_state) &

NoLoops(new_state, history) &

Solve(new_state, [new_state|history], moves).

PREDICATE NoLoops : State * List(State).

NoLoops(_, []).

NoLoops(st, [st1|rest]) <-

st ~= st1 &

NoLoops(st, rest).

PREDICATE Run : List(Move).

Run(moves) <-

Initial(initial_state) &

Solve(initial_state, [initial_state], moves).
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EXPORT WolfGoatCabbage.

% The wolf-goat-cabbage problem, as described in Sterling and Shapiro,

% The Art of Prolog, pages 285-287.

IMPORT Lists, Sets.

BASE Object, State, Move.

CONSTANT Farmer, Wolf, Goat, Cabbage : Object.

FUNCTION St : Set(Object) * Set(Object) -> State;

LeftToRight : Set(Object) -> Move;

RightToLeft : Set(Object) -> Move.

PREDICATE Initial, Final : State;

Applicable : Move * State;

ApplyMove : Move * State * State;

Legal : State.
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LOCAL WolfGoatCabbage.

% PREDICATE Initial : State.

Initial(St({Farmer,Wolf,Goat,Cabbage}, {})).

% PREDICATE Final : State.

Final(St({}, {Farmer,Wolf,Goat,Cabbage})).

% PREDICATE Applicable : Move * State.

Applicable(LeftToRight({Farmer}), St(left,_)) <-

Farmer In left.

Applicable(RightToLeft({Farmer}), St(_,right)) <-

Farmer In right.

Applicable(LeftToRight({Farmer,x}), St(left,_)) <-

{Farmer,x} Subset left &

x In {Wolf,Goat,Cabbage}.

Applicable(RightToLeft({Farmer,x}), St(_,right)) <-

{Farmer,x} Subset right &

x In {Wolf,Goat,Cabbage}.

% PREDICATE ApplyMove : Move * State * State.

ApplyMove(LeftToRight(cargo), St(left,right), St(left\cargo,right+cargo)).

ApplyMove(RightToLeft(cargo), St(left,right), St(left+cargo,right\cargo)).

% PREDICATE Legal : State.

Legal(St(left,right)) <-

~ Illegal(left) &

~ Illegal(right).
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PREDICATE Illegal : Set(Object).

Illegal(bank) <-

~ Farmer In bank &

({Goat,Cabbage} Subset bank \/ {Wolf,Goat} Subset bank).
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10.3 Tableau

The next program, which is a tableau propositional theorem prover, illustrates the use of the
system modules Units and Flocks. In this program, a propositional theory is represented as a
flock. For example, the theory

(A & B) -> ~~E.

E -> (C & D).

A -> F.

F -> A.

(E \/ ~F) -> D.

would appear in a flock as

->(&(A,B),~(~(E))).

->(E,&(C,D)).

->(A,F).

->(F,A).

->(\/(E,~(F)),D).

This flock would be flock-compiled. Then typical queries to the program could be

<- TestProve("theory", "->(B,\\/(C,D))", indicator).

to which the answer is indicator = YES, and

<- TestProve("theory", "&(A,B)", indicator).

to which the answer is indicator = NO.
We remark on two points of interest in this program. The first is that the theorem prover has

been written in a “non-failing” style so that the predicate Prove succeeds whether the formula is
a theorem or not. This is achieved by adding an extra argument to Prove which records whether
there was a proof or not. This style has some important advantages over the more usual one
whereby exceptions of one kind or another are captured by failure. These are that the code which
results from the “non-failing” style tends to have a clearer declarative reading and that there is
usually much less need for pruning. For example, in the following program, no pruning is needed
at all.

The other point is that the use of abstract data types means that all the heads of the statements
in the predicate Apply are most general and it is only in the body by using UnitParts that we
determine which case applies. Having such general heads could mean that no indexing could be
done which leads to inefficiencies when the program is run. However, partial evaluation of the
calls to UnitParts can be used to push the structure of the first argument of Apply back into
the head. This process can be made invisible to the programmer so that we end up with the
advantages of using abstract data types and also the efficiency obtained from having as much
structure in the heads of statements as possible.
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MODULE TestTableau.

IMPORT FlocksIO, Tableau.

PREDICATE TestProve :

String % The name of a file (without the .flk extension) containing the

% flock representation of a propositional theory.

* String % The string representation of a propositional formula.

* Indicator. % YES, if the formula is a theorem, and NO, if it is not.

TestProve(theory_string, formula_string, indicator) <-

FindInput(theory_string ++ ".flk", In(stream)) &

GetFlock(stream, theory) &

EndInput(stream) &

StringToUnit(formula_string, formula) &

Prove(theory, formula, indicator).

DELAY TestProve(x,y,_) UNTIL GROUND(x) & GROUND(y).
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EXPORT Tableau.

% This module contains an implementation of a tableau propositional theorem

% prover as described, for example, in "Logic for Computer Science", S. Reeves

% and M. Clarke, Addison-Wesley, 1990, pages 64-75. The connectives admitted

% are &, \/, ->, and ~.

IMPORT Flocks.

BASE Indicator.

%

% The type of the constants YES, indicating a formula is a theorem of a

% theory, and NO, indicating that it is not.

CONSTANT YES, NO : Indicator.

PREDICATE Prove :

Flock % A propositional theory.

* Unit % A propositional formula.

* Indicator. % YES, if the formula is a theorem of the theory, and NO,

% if it is not.

DELAY Prove(x,y,_) UNTIL GROUND(x) & GROUND(y).
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LOCAL Tableau.

IMPORT Sets.

BASE Leaf, Node, Tableau.

FUNCTION Nd :

Integer % A pointer.

* Unit % The propositional formula in the node pointed to by this

% pointer.

-> Node.

FUNCTION Lf :

Integer % A pointer to an open leaf node. (A leaf node is open if it

% is at the end of a non-closed branch in a tableau.)

* Set(Integer) % The set of pointers to the ancestors of this node plus the

% pointer to the node itself.

-> Leaf.

FUNCTION Tb :

Set(Leaf) % The set of open leaf nodes in a tableau.

* Set(Node) % The set of all nodes in this tableau.

* Set(Integer) % The set of pointers to nodes in this tableau which have yet

% to be expanded and lie on non-closed branches.

* Integer % The maximum value of pointers in this tableau.

-> Tableau.

% PREDICATE Prove : Flock * Unit * Indicator.

Prove(theory, theorem, indicator) <-

UnitParts(neg_thm, "~", [theorem]) &

(IF Literal(neg_thm) THEN exp = {} ELSE exp = {1}) &

InitialiseTableau(theory,Tb({Lf(1,{1})},{Nd(1,neg_thm)},exp,1), tableau) &

Unsatisfiable(tableau, indicator).

PREDICATE InitialiseTableau :
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Flock % A propositional theory.

* Tableau % A tableau containing only the negation of the formula to be

% proved.

* Tableau. % The tableau containing just the axioms in this theory and the

% negation of the formula to be proved.

InitialiseTableau(theory, Tb(leaves,nodes,exp,max), tableau) <-

IF SOME [f,n] UnitInFlock(theory, f, n)

THEN

DeleteUnit(theory, f, n, new_theory) &

Lf(max,anc) In leaves &

(IF Closed(f,anc,nodes)

THEN

tableau = Tb({},{},{},0) % Tableau is closed.

ELSE

(IF Literal(f) THEN e = {} ELSE e = {max+1}) &

InitialiseTableau(new_theory,

Tb({Lf(max+1,anc+{max+1})},nodes+{Nd(max+1,f)},exp+e,max+1),

tableau)

)

ELSE

tableau = Tb(leaves,nodes,exp,max).

PREDICATE Unsatisfiable :

Tableau % A tableau.

* Indicator. % YES, if the tableau can be expanded to an unsatisfiable one,

% and NO, otherwise.

Unsatisfiable(Tb({},_,_,_), YES).

Unsatisfiable(Tb(leaves,nodes,exp,max), indicator) <-

leaves ~= {} &

IF SOME [n] n In exp

THEN

new_exp = exp\{n} &

Nd(n,f) In nodes &

leaf_ptrs = {m : SOME [anc] ((Lf(m,anc) In leaves) & (n In anc))} &

(IF leaf_ptrs = {}

THEN

tableau = Tb(leaves,nodes,new_exp,max)

ELSE

Apply(f, leaf_ptrs, Tb(leaves,nodes,new_exp,max), tableau)
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) &

Unsatisfiable(tableau, indicator)

ELSE

indicator = NO.

PREDICATE Closed :

Unit % A formula closed wrt to the formulas in the nodes in the

% third argument.

* Set(Integer) % A set of pointers to nodes.

* Set(Node). % A set of nodes.

Closed(f, ptrs, nodes) <-

m In ptrs &

Nd(m,f1) In nodes &

(UnitParts(f, "~", [f1]) \/ UnitParts(f1, "~", [f])).

PREDICATE Literal :

Unit. % A propositional formula which is a literal.

Literal(f) <-

UnitParts(f, _, []).

Literal(f) <-

UnitParts(f, "~", [f1]) &

UnitParts(f1, _, []).

PREDICATE Apply :

Unit % A propositional formula which is not a literal.

* Set(Integer) % A set of pointers to open leaf nodes.

* Tableau % A tableau containing these open leaf nodes.

* Tableau. % The tableau obtained by extending this tableau at each of

% these open leaf nodes according to this formula.

Apply(f, leaf_ptrs, Tb(leaves,nodes,exp,max), tableau) <-

UnitParts(f, "\\/", [f1, f2]) & % f = f1 \/ f2

ExpandOr(f1,f2,leaf_ptrs,Tb(leaves,nodes,exp,max),tableau).

Apply(f, leaf_ptrs, Tb(leaves,nodes,exp,max), tableau) <-

UnitParts(f, "->", [f1, f2]) & % f = f1 -> f2
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UnitParts(notf1, "~", [f1]) &

ExpandOr(notf1,f2,leaf_ptrs,Tb(leaves,nodes,exp,max),tableau).

Apply(f, leaf_ptrs, Tb(leaves,nodes,exp,max), tableau) <-

UnitParts(f, "&", [f1, f2]) & % f = f1 & f2

ExpandAnd(f1,f2,leaf_ptrs,Tb(leaves,nodes,exp,max),tableau).

Apply(f, leaf_ptrs, Tb(leaves,nodes,exp,max), tableau) <-

UnitParts(f, "~", [f1]) &

UnitParts(f1, "&", [f2, f3]) & % f = ~(f2 & f3)

UnitParts(notf2, "~", [f2]) &

UnitParts(notf3, "~", [f3]) &

ExpandOr(notf2,notf3,leaf_ptrs,Tb(leaves,nodes,exp,max),tableau).

Apply(f, leaf_ptrs, Tb(leaves,nodes,exp,max), tableau) <-

UnitParts(f, "~", [f1]) &

UnitParts(f1, "\\/", [f2, f3]) & % f = ~(f2 \/ f3)

UnitParts(notf2, "~", [f2]) &

UnitParts(notf3, "~", [f3]) &

ExpandAnd(notf2,notf3,leaf_ptrs,Tb(leaves,nodes,exp,max),tableau).

Apply(f, leaf_ptrs, Tb(leaves,nodes,exp,max), tableau) <-

UnitParts(f, "~", [f1]) &

UnitParts(f1, "->", [f2, f3]) & % f = ~(f2 -> f3)

UnitParts(notf3, "~", [f3]) &

ExpandAnd(f2,notf3,leaf_ptrs,Tb(leaves,nodes,exp,max),tableau).

Apply(f, leaf_ptrs, Tb(leaves,nodes,exp,max), tableau) <-

UnitParts(f, "~", [f1]) &

UnitParts(f1, "~", [f2]) & % f = ~~f2

ExpandNegNeg(f2,leaf_ptrs,Tb(leaves,nodes,exp,max),tableau).

PREDICATE ExpandOr :

Unit % A propositional formula.

* Unit % A propositional formula.

* Set(Integer) % A set of pointers to open leaf nodes.

* Tableau % A tableau containing these open leaf nodes.

* Tableau. % The tableau obtained by extending this tableau at each of

% these open leaf nodes with two "or" children corresponding

% to each of these formulas.

ExpandOr(f1,f2,leaf_ptrs,Tb(leaves,nodes,exp,max),new_tableau) <-

IF SOME [n] n In leaf_ptrs
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THEN

Lf(n,anc) In leaves &

max1 = max + 1 &

max2 = max + 2 &

(IF Literal(f1) THEN e1 = {} ELSE e1 = {max1}) &

(IF Literal(f2) THEN e2 = {} ELSE e2 = {max2}) &

(IF Closed(f1,anc,nodes) THEN lf1 = {} ELSE lf1 = {Lf(max1,anc+{max1})}) &

(IF Closed(f2,anc,nodes) THEN lf2 = {} ELSE lf2 = {Lf(max2,anc+{max2})}) &

ExpandOr(f1, f2, leaf_ptrs\{n},

Tb((leaves\{Lf(n,anc)})+lf1+lf2, nodes+{Nd(max1,f1),Nd(max2,f2)},

exp+e1+e2,max2),

new_tableau)

ELSE

new_tableau = Tb(leaves,nodes,exp,max).

PREDICATE ExpandAnd :

Unit % A propositional formula.

* Unit % A propositional formula.

* Set(Integer) % A set of pointers to open leaf nodes.

* Tableau % A tableau containing these open leaf nodes.

* Tableau. % The tableau obtained by extending this tableau at each of

% these open leaf nodes with two "and" children corresponding

% to each of these formulas.

ExpandAnd(f1,f2,leaf_ptrs,Tb(leaves,nodes,exp,max),new_tableau) <-

IF SOME [n] n In leaf_ptrs

THEN

Lf(n,anc) In leaves &

max1 = max + 1 &

max2 = max + 2 &

(IF Literal(f1) THEN e1 = {} ELSE e1 = {max1}) &

(IF Literal(f2) THEN e2 = {} ELSE e2 = {max2}) &

(IF (Closed(f1,anc,nodes) \/ Closed(f2,anc+{max1},nodes+{Nd(max1,f1)}))

THEN lf2 = {} ELSE lf2 = {Lf(max2,anc+{max1,max2})}) &

ExpandAnd(f1, f2, leaf_ptrs\{n},

Tb((leaves\{Lf(n,anc)})+lf2, nodes+{Nd(max1,f1),Nd(max2,f2)},

exp+e1+e2,max2),

new_tableau)

ELSE

new_tableau = Tb(leaves,nodes,exp,max).

PREDICATE ExpandNegNeg :
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Unit % A propositional formula.

* Set(Integer) % A set of pointers to open leaf nodes.

* Tableau % A tableau containing these open leaf nodes.

* Tableau. % The tableau obtained by extending this tableau at each of

% these open leaf nodes with a node containing this formula.

ExpandNegNeg(f1,leaf_ptrs,Tb(leaves,nodes,exp,max),new_tableau) <-

IF SOME [n] n In leaf_ptrs

THEN

Lf(n,anc) In leaves &

max1 = max + 1 &

(IF Literal(f1) THEN e1 = {} ELSE e1 = {max1}) &

(IF Closed(f1,anc,nodes) THEN lf1 = {} ELSE lf1 = {Lf(max1,anc+{max1})}) &

ExpandNegNeg(f1, leaf_ptrs\{n},

Tb((leaves\{Lf(n,anc)}) + lf1, nodes+{Nd(max1,f1)}, exp+e1, max1),

new_tableau)

ELSE

new_tableau = Tb(leaves,nodes,exp,max).
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10.4 Vanilla

The module Vanilla below contains a solve interpreter written using a non-ground represen-
tation. For this example, the object program is the program consisting of the module M2 (with
some added control on Append).

We adopt the convention that an object level symbol is represented by a meta-level symbol
with a name that consists of the name of the object level symbol prefixed by an O (for object).
In the non-ground representation, parameters at the object level are represented by parameters
at the meta-level, bases by bases, constructors by constructors, variables by variables, constants
by constants, functions by functions, propositions by constants, predicates by functions, and
connectives by functions. The type OFormula is used for the type of meta-level terms representing
object-level formulas. The connective & is represented by the function And, the connective ~ is
represented by the function Not, and the connective <- is represented by the function If. Note
that object level predicates are represented by meta-level functions, so that, for example, the
predicate Append is represented by the function OAppend with declaration

FUNCTION OAppend : OList(ODay) * OList(ODay) * OList(ODay) -> OFormula.

Statements in the object program M2 are represented in OM2 using the predicate Statement and
the constant Empty, which is used to represent the empty body.

Note how control at the object level can be pushed to the meta-level. In M2, we assume that
there is a DELAY declaration for Append as follows.

DELAY Append(x,_,z) UNTIL NONVAR(x) \/ NONVAR(z).

This DELAY declaration is represented by the DELAY declaration for Statement given in module
OM2. Then a goal of the form

<- Solve(OAppend3(r′,s′,t′)).

where r′, s′, and t′ are the representations of r, s, and t, respectively, will run with the same
control as the object level goal

<- Append3(r,s,t).

It is straightforward to extend the non-ground representation of programs consisting of one
module to programs consisting of a number of modules. Note, however, that a programmer has to
provide the non-ground representation of object level modules, as there is no utility provided to
do this. Also there are limitations on what can be represented. For example, it is not possible to
form the non-ground representation of a module containing a polymorphic predicate (for example,
Append in module M3). The reason is that the function which represents such a polymorphic
predicate has a non-transparent language declaration. Furthermore, there is no way in the non-
ground representation to represent quantifiers.

The program {Vanilla, OM2} shows that it is possible to use Gödel to illustrate the basics
of the non-ground representation and to write the vanilla interpreter and simple extensions of it,
as given in standard Prolog textbooks. However, as we pointed out above, there are restrictions
on what can be represented and, in any case, it is not possible to do serious meta-programming
in a declarative way with the non-ground representation. These are the main reasons why Gödel
does not provide any special support for the non-ground representation, but, instead, provides
considerable support for the ground representation.
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MODULE Vanilla.

IMPORT OM2.

PREDICATE Solve : OFormula.

DELAY Solve(x) UNTIL NONVAR(x).

Solve(Empty).

Solve(x And y) <-

Solve(x) &

Solve(y).

Solve(Not x) <-

~ Solve(x).

Solve(x) <-

Statement(x If y) &

Solve(y).
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EXPORT OM2.

BASE OFormula, ODay.

CONSTRUCTOR OList/1.

CONSTANT Empty : OFormula;

ONil : OList(ODay);

OMonday, OTuesday, OWednesday, OThursday, OFriday, OSaturday,

OSunday : ODay.

FUNCTION And : xFy(110) : OFormula * OFormula -> OFormula;

Not : Fy(120) : OFormula -> OFormula;

If : xFx(100) : OFormula * OFormula -> OFormula;

OCons : ODay * OList(ODay) -> OList(ODay);

OAppend : OList(ODay) * OList(ODay) * OList(ODay) -> OFormula;

OAppend3 : OList(ODay) * OList(ODay) * OList(ODay) * OList(ODay)

-> OFormula.

PREDICATE Statement : OFormula.

DELAY Statement(OAppend(x,_,z) If _) UNTIL NONVAR(x) \/ NONVAR(z).

LOCAL OM2.

Statement(OAppend(ONil,x,x) If Empty).

Statement(OAppend(OCons(u,x),y,OCons(u,z)) If OAppend(x,y,z)).

Statement(OAppend3(x,y,z,u) If OAppend(x,y,w) And OAppend(w,z,u)).
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10.5 ThreeWisemen

The next program implements a solution to the three wisemen puzzle. The meta-level architecture
chosen is a simple one that captures the reasoning of the third wiseman in a way which is
semantically defensible. However, the main purpose of the program is not to make a contribution
to the study of meta-reasoning, but rather to illustrate how dynamic meta-programming can be
done in a declarative way.



128 CHAPTER 10. EXAMPLE PROGRAMS

MODULE ThreeWisemen.

% The Three Wisemen puzzle is as follows:

% A king, wishing to find out which of his three wisemen is the wisest, puts

% a hat on each of their heads, and tells them that each hat is either black

% or white and at least one of the hats is white. The king does this in such a

% way that each wiseman can see the hats of the other wisemen, but not his own.

% In fact, each wiseman has a white hat on. The king then successively asks

% each one of wisemen whether he knows the colour of his own hat. The first

% wiseman answers "I don’t know", as does the second. Then the third announces

% that his hat is white.

%

% The reasoning of the third wiseman is as follows:

% "Suppose my hat is black. Then the second wiseman would see a black hat and

% a white hat, and would reason that, if his hat is black, the first wiseman

% would see two black hats and hence would conclude that his hat is white on

% the basis of the king’s assurance that at least one of the hats is white.

% But the second wiseman said he didn’t know the colour of his hat. Hence my

% hat must be white."

%

% This program directly simulates the reasoning of the third wiseman. The

% module Wiseman3KB contains the knowledge of the third wiseman. The module

% Reasoner contains two reasoning procedures in the form of the two statements

% for the predicate Solve. The first statement embodies the principle: "if I

% can see the other two hats are black, then mine must be white". The second

% embodies a proof by contradiction: "if I assume my hat is a particular colour

% and thereby derive a contradiction of the fact that one of the other wisemen

% didn’t know the colour of his hat, then my hat must be the other colour".

%

% The module Wiseman3KB needs to be program-compiled first.

%

% Query: <- Go(colour).

IMPORT ProgramsIO, Reasoner.

PREDICATE Go : Colour.

Go(colour) <-

FindInput("Wiseman3KB.prm", In(stream)) &

GetProgram(stream, wiseman3_kb) &

EndInput(stream) &

Solve(W3,wiseman3_kb, colour).
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EXPORT Reasoner.

% This module contains the two reasoning procedures for the Three Wisemen

% puzzle.

IMPORT Programs.

BASE Wiseman, Colour.

CONSTANT W1, W2, W3 : Wiseman;

Black, White : Colour.

PREDICATE Solve :

Wiseman % A wiseman.

* Program % The knowledge known, or assumed to be known, to this

% wiseman by the third wiseman, W3.

* Colour. % The colour of this wiseman’s hat.

LOCAL Reasoner.

IMPORT Sets.

% PREDICATE Solve : Wiseman * Program * Colour.

Solve(wiseman, kb, White) <-

{Enumerate(wiseman, next_wiseman, last_wiseman)} &

FormBodyString1(wiseman, next_wiseman, Black, body2_string) &

FormBodyString1(wiseman, last_wiseman, Black, body3_string) &

Prove(kb, body2_string) &

Prove(kb, body3_string).

Solve(wiseman, kb, colour) <-

Enumerate(wiseman, next_wiseman, last_wiseman) &

FormBodyString2(wiseman, next_wiseman, body_string) &

Prove(kb, body_string) &

AssumeHatColour(wiseman, next_wiseman, Black, kb, kb2) &

AssumeHatColour(wiseman, last_wiseman, Black, kb2, new_kb) &

IF Solve(next_wiseman, new_kb, _)



130 CHAPTER 10. EXAMPLE PROGRAMS

THEN colour = White

ELSE

AssumeHatColour(wiseman, next_wiseman, White, kb, kb3) &

AssumeHatColour(wiseman, last_wiseman, White, kb3, newer_kb) &

Solve(next_wiseman, newer_kb, _) &

colour = Black.

PREDICATE Enumerate :

Wiseman % A wiseman.

* Wiseman % A wiseman different from the previous one.

* Wiseman. % The remaining wiseman.

Enumerate(x, y, z) <-

x In {W1, W2, W3} &

y In {W1, W2, W3}\{x} &

z In {W1, W2, W3}\{x,y}.

PREDICATE AssumeHatColour :

Wiseman % A wiseman.

* Wiseman % Another wiseman.

* Colour % A colour.

* Program % A knowledge base.

* Program. % The knowledge base obtained from this knowledge base by

% adding the fact that the second wiseman knows that this

% colour is the colour of the first wiseman’s hat.

AssumeHatColour(wiseman, other_wiseman, colour, kb, new_kb) <-

MainModuleInProgram(kb,module) &

FormBodyString1(other_wiseman, wiseman, colour, string) &

StringToProgramFormula(kb, module, string, [atom]) &

EmptyFormula(empty_formula) &

IsImpliedBy(atom, empty_formula, fact) &

InsertStatement(kb, module, fact, new_kb).

PREDICATE Prove :

Program % A knowledge base.

* String. % The string representation of the body of a goal which

% succeeds for this knowledge base.
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Prove(kb,body_string) <-

MainModuleInProgram(kb,module) &

StringToProgramFormula(kb, module, body_string, [body]) &

Succeed(kb,body,_).

PREDICATE FormBodyString1 :

Wiseman % A wiseman.

* Wiseman % Another wiseman.

* Colour % A colour.

* String. % The string representation of the body of the fact that

% the first wiseman knows that this is the colour of the

% hat of the second wiseman.

FormBodyString1(W1, W2, White, "Knows(W1, Hat(W2, White))").

FormBodyString1(W1, W3, White, "Knows(W1, Hat(W3, White))").

FormBodyString1(W2, W1, White, "Knows(W2, Hat(W1, White))").

FormBodyString1(W2, W3, White, "Knows(W2, Hat(W3, White))").

FormBodyString1(W3, W1, White, "Knows(W3, Hat(W1, White))").

FormBodyString1(W3, W2, White, "Knows(W3, Hat(W2, White))").

FormBodyString1(W1, W2, Black, "Knows(W1, Hat(W2, Black))").

FormBodyString1(W1, W3, Black, "Knows(W1, Hat(W3, Black))").

FormBodyString1(W2, W1, Black, "Knows(W2, Hat(W1, Black))").

FormBodyString1(W2, W3, Black, "Knows(W2, Hat(W3, Black))").

FormBodyString1(W3, W1, Black, "Knows(W3, Hat(W1, Black))").

FormBodyString1(W3, W2, Black, "Knows(W3, Hat(W2, Black))").

PREDICATE FormBodyString2 :

Wiseman % A wiseman.

* Wiseman % Another wiseman.

* String. % The string representation of the body of the fact that

% the first wiseman knows that the second wiseman doesn’t

% know the colour of his own hat.

FormBodyString2(W1, W2, "Knows(W1, DoesntKnow(W2))").

FormBodyString2(W1, W3, "Knows(W1, DoesntKnow(W3))").

FormBodyString2(W2, W1, "Knows(W2, DoesntKnow(W1))").

FormBodyString2(W2, W3, "Knows(W2, DoesntKnow(W3))").

FormBodyString2(W3, W1, "Knows(W3, DoesntKnow(W1))").

FormBodyString2(W3, W2, "Knows(W3, DoesntKnow(W2))").



132 CHAPTER 10. EXAMPLE PROGRAMS

MODULE Wiseman3KB.

% The knowledge base of the third wiseman, W3.

BASE Wiseman, Colour, Fact.

CONSTANT W1, W2, W3 : Wiseman;

Black, White : Colour.

FUNCTION DoesntKnow : Wiseman -> Fact;

Hat : Wiseman * Colour -> Fact.

PREDICATE Knows :

Wiseman % A wiseman.

* Fact. % Some knowledge which W3 knows to be known to this wiseman.

Knows(W3, DoesntKnow(W1)).

Knows(W3, DoesntKnow(W2)).

Knows(W3, Hat(W1,White)).

Knows(W3, Hat(W2,White)).

Knows(W2, DoesntKnow(W1)).

Knows(W2, Hat(W1,White)).

Knows(W1, Hat(W2,White)).
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10.6 Interpreter

The module Interpreter below shows how a programmer might make use of the predicates pro-
vided by the module Programs. Interpreter contains the definitions of the predicate MySucceed,
which is intended to be true when its first argument is the representation of a normal program
(without commits or conditionals), its second argument is the representation of the body of a
normal goal to this program, and its third argument is the representation of a computed answer
for this goal and program using SLDNF-resolution. The predicate MyFail is intended to be true
when its first argument is the representation of a normal program, and its second argument is
the representation of the body of a normal goal in the flat language of the program which has a
finitely failed SLDNF-tree wrt this program. The predicate Select implements the safe “leftmost
literal” computation rule. Select is intended to be true when its first argument represents a non-
empty conjunction of literals Q in this language, its second argument represents the conjunction
of literals of Q which is the largest prefix of Q containing only non-ground negative literals, its
third argument is of the form Pos(E) or Neg(E), where E represents the first atom or ground
negative literal appearing in Q (and where Pos indicates that it is a positive literal and Neg

indicates that it is a ground negative literal), and its fourth argument represents the conjunction
of literals in Q to the right E.

To run the interpreter, a goal such as

<- Go1("M4", "Append([Monday, Tuesday], [Wednesday], x)", answer).

could be used. This would produce the answer

answer = "{x/[Monday,Tuesday,Wednesday]}".

Similarly, a goal such as

<- Go2("M4", "Append([Monday, Tuesday], [Wednesday], [])").

gives the answer Yes.
Note the use Interpreter makes of the system predicates Succeed and Fail in Programs for

running literals whose proposition or predicate is not defined in an open module. The code in
Interpreter could be used as the basis for an interpreter which required a more sophisticated
computation rule using coroutining, for example.

Not surprisingly, Interpreter runs rather slowly (in fact, around 2 orders of magnitude
slower than running the object program directly). However, it is important to appreciate that,
by rewriting parts of the interpreter and employing partial evaluation techniques, it is possible to
significantly improve its speed. A similar approach can be applied to other meta-programs. The
details of this may be found in [8] and [9].
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MODULE TestInterpreter.

IMPORT Interpreter, ProgramsIO, Answers.

PREDICATE Go1 : String * String * String.

Go1(prog_string, goal_string, answer_string) <-

FindInput(prog_string ++ ".prm", In(stream)) &

GetProgram(stream, program) &

MainModuleInProgram(program, module) &

StringToProgramFormula(program, module, goal_string, [goal]) &

NormalBody(goal) &

CommitFreeFormula(goal) &

MySucceed(program, goal, answer) &

RestrictSubstToFormula(goal, answer, computed_answer) &

AnswerString(program, module, computed_answer, answer_string).

PREDICATE Go2 : String * String.

Go2(prog_string, goal_string) <-

FindInput(prog_string ++ ".prm", In(stream)) &

GetProgram(stream, program) &

MainModuleInProgram(program, module) &

StringToProgramFormula(program, module, goal_string, [goal]) &

NormalBody(goal) &

CommitFreeFormula(goal) &

MyFail(program, goal).
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EXPORT Answers.

IMPORT Programs.

PREDICATE AnswerString : Program * String * TermSubst * String.

LOCAL Answers.

% PREDICATE AnswerString : Program * String * TermSubst * String.

AnswerString(program, module, answer, "{" ++ string ++ "}") <-

AnswerString1(program, module, answer, string).

PREDICATE AnswerString1 : Program * String * TermSubst * String.

AnswerString1(program, module, answer, string) <-

{IF SOME [var, term, answer1]

DelBindingInTermSubst(answer, var, term, answer1)

THEN

ProgramTermToString(program, module, var, var_string) &

ProgramTermToString(program, module, term, term_string) &

AnswerString2(program, module, answer1, var_string ++ "/" ++ term_string,

string)

ELSE

string = ""

}.

PREDICATE AnswerString2 : Program * String * TermSubst * String * String.

AnswerString2(program, module, answer, so_far, string) <-

{IF SOME [var, term, answer1]

DelBindingInTermSubst(answer, var, term, answer1)

THEN

ProgramTermToString(program, module, var, var_string) &

ProgramTermToString(program, module, term, term_string) &

AnswerString2(program, module, answer1,

so_far ++ "," ++ var_string ++ "/" ++ term_string, string)

ELSE

string = so_far

}.
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EXPORT Interpreter.

% This module implements an interpreter for SLDNF-resolution using the ground

% representation. The computation rule employed is the safe "leftmost literal"

% one, that is, the selected literal is the leftmost literal which is either an

% atom or a ground negative literal. This module assumes the existence of one

% above it which handles the conversion of goals and answers between their

% string representation and their ground representation.

IMPORT Programs.

PREDICATE MySucceed :

Program % Representation of a normal program (excluding commits and

% conditionals).

* Formula % Representation of the body of a normal goal to this program.

* TermSubst. % Representation of a computed answer for this goal and

% program using SLDNF-resolution and the safe leftmost literal

% computation rule.

DELAY MySucceed(x,y,_) UNTIL GROUND(x) & GROUND(y).

PREDICATE MyFail :

Program % Representation of a normal program (excluding commits and

% conditionals).

* Formula. % Representation of the body of a normal goal to this program

% such that this goal and this program have a finitely failed

% SLDNF-tree using the safe leftmost literal computation rule.

DELAY MyFail(x,y) UNTIL GROUND(x) & GROUND(y).
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LOCAL Interpreter.

BASE SignedFormula.

FUNCTION Pos, Neg : Formula -> SignedFormula.

% PREDICATE MySucceed : Program * Formula * TermSubst.

MySucceed(program, body, computed_answer) <-

EmptyTermSubst(empty_subst) &

IF EmptyFormula(body)

THEN

computed_answer = empty_subst

ELSE

Select(body, left, selected, right) &

MySucceed1(program, body, left, selected, right, empty_subst, answer) &

RestrictSubstToFormula(body, answer, computed_answer).

PREDICATE MySucceed1 :

Program % Representation of a normal program.

* Formula % Representation of the head of a resultant.

* Formula % Representation of the body of the resultant to the left of

% the selected literal.

* SignedFormula % Representation of the selected literal in the body.

* Formula % Representation of the body of the resultant to the right of

% the selected literal.

* TermSubst % Representation of a term substitution.

* TermSubst. % Representation of the term substitution obtained by

% composing the term substitution in the sixth argument

% with the computed answer obtained for this program and

% resultant.

MySucceed1(program, head, left, Pos(selected), right, answer_so_far, answer) <-

(IF SOME [module] DeclaredInOpenModule(program, module, selected)

THEN

StatementMatchAtom(program, module, selected, stat) &

RenameFormulas([head,left,selected,right], [stat], [new_stat]) &

Derive(head, left, selected, right, new_stat, mgu, new_resultant) &

ComposeTermSubsts(answer_so_far, mgu, new_answer) &
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IsImpliedBy(new_head, new_body, new_resultant)

ELSE

FormulaMaxVarIndex([head,left,selected,right],varindex) &

EmptyTermSubst(empty) &

Compute(program, selected, varindex, _, empty, subst, last_goal) &

EmptyFormula(last_goal) &

ApplySubstToFormula(head, subst, new_head) &

AndWithEmpty(left, right, body1) &

ApplySubstToFormula(body1, subst, new_body) &

ComposeTermSubsts(answer_so_far, subst, new_answer)

) &

IF EmptyFormula(new_body)

THEN

answer = new_answer

ELSE

Select(new_body, new_left, new_selected, new_right) &

MySucceed1(program, new_head, new_left, new_selected, new_right,

new_answer, answer).

MySucceed1(program, head, left, Neg(selected), right, answer_so_far, answer) <-

(IF DeclaredInOpenModule(program, _, selected)

THEN

EmptyFormula(empty_formula) &

MyFail1(program, empty_formula, Pos(selected), empty_formula)

ELSE

Fail(program, selected)

) &

AndWithEmpty(left, right, new_body) &

IF EmptyFormula(new_body)

THEN

answer = answer_so_far

ELSE

Select(new_body, new_left, new_selected, new_right) &

MySucceed1(program, head, new_left, new_selected, new_right,

answer_so_far, answer).

% PREDICATE MyFail : Program * Formula.

MyFail(program, body) <-

Select(body, left, selected, right) &

MyFail1(program, left, selected, right).

PREDICATE MyFail1 :
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Program % Representation of a normal program for which there exists a

% finitely failed SLDNF-tree for a goal, using the safe

% "leftmost literal" computation rule.

* Formula % Representation of the body of the goal to the left of the

% selected literal.

* SignedFormula % Representation of the selected literal in the body of the

% goal.

* Formula. % Representation of the body of the goal to the right of the

% selected literal.

MyFail1(program, left, Pos(selected), right) <-

EmptyFormula(empty_formula) &

IF SOME [module] DeclaredInOpenModule(program, module, selected)

THEN

ALL [new_body]

(SOME [l, s, r] (Select(new_body, l, s, r) & MyFail1(program, l, s, r))

<-

SOME [stat, new_stat, new_goal]

(StatementMatchAtom(program, module, selected, stat) &

RenameFormulas([left,selected,right], [stat], [new_stat]) &

Derive(empty_formula, left, selected, right, new_stat, _, new_goal) &

IsImpliedBy(empty_formula, new_body, new_goal)

)

)

ELSE

IF Fail(program, selected)

THEN

True

ELSE

FormulaMaxVarIndex([left,selected,right],varindex) &

EmptyTermSubst(empty) &

Compute(program, selected, varindex, _, empty, subst, last_goal) &

EmptyFormula(last_goal) &

AndWithEmpty(left, right, body1) &

ApplySubstToFormula(body1, subst, new_body) &

Select(new_body, new_left, new_selected, new_right) &

MyFail1(program, new_left, new_selected, new_right).

MyFail1(program, _, Neg(selected), _) <-

EmptyFormula(empty_formula) &

EmptyTermSubst(empty_subst) &

MySucceed1(program, selected, empty_formula, Pos(selected), empty_formula,

empty_subst, _) |.
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MyFail1(program, left, Neg(selected), right) <-

EmptyFormula(empty_formula) &

MyFail1(program, empty_formula, Pos(selected), empty_formula) |

AndWithEmpty(left, right, new_body) &

Select(new_body, new_left, new_selected, new_right) &

MyFail1(program, new_left, new_selected, new_right).

PREDICATE Select :

Formula % Representation of a (non-empty) conjunction of literals.

* Formula % Representation of the conjunction of literals to the left

% of the selected literal.

* SignedFormula % Term with function Pos or Neg at the top-level and

% containing the representation of the atom in the selected

% literal (according to the safe "leftmost literal"

% computation rule and where Pos is used if the selected

% literal is an atom and Neg otherwise).

* Formula. % Representation of the conjunction of literals to the right

% of the selected literal.

Select(atom, empty_formula, Pos(atom), empty_formula) <-

Atom(atom) &

EmptyFormula(empty_formula).

Select(negative_literal, empty_formula, Neg(atom), empty_formula) <-

Not(atom, negative_literal) &

GroundAtom(atom) &

EmptyFormula(empty_formula).

Select(body, left, selected, right) <-

And(l, r, body) &

IF SOME [l1, s1, r1] Select(l, l1, s1, r1)

THEN

left = l1 &

selected = s1 &

AndWithEmpty(r1, r, right)

ELSE

Select(r, l1, selected, right) &

AndWithEmpty(l, l1, left).



Part II

Definition of Gödel
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Chapter 11

Syntax

In this chapter, we present the syntax of Gödel. Our main objective is to define precisely the
concepts of program, goal, theory, and flock.

11.1 Notation

We first describe the notation in which the grammar is defined. A grammar rule takes the
following form:

non-terminal −→ sequence of terminals and non-terminals

There may be more than one way of decomposing a non-terminal, in which case the alternatives
are separated by |. A terminal is distinguished from a non-terminal by being placed within
angle-brackets < >. Some non-terminals have arguments: a lower case letter indicates that the
argument is a variable. A sequence X of terminals and non-terminals may be enclosed in brackets:

{X} means 0 or more occurrences of X.

{X}(n) means exactly n occurrences of X.

[X] means 0 or 1 occurrence of X.

For some rules, extra conditions determine whether a particular rule can be applied. These
conditions are given in italic text following the rule to which they apply.

11.2 Tokens

A program, theory, and so on, can be regarded as text consisting of a string of characters.
This string is parsed and substrings of characters are identified as tokens. Thus the text is first
transformed to a sequence of these tokens. It is this sequence of tokens and not the original
text that will be used in the grammars given in subsequent sections. The text includes special
sequences of characters, called layout items, which improve the layout and readability of the text.
In addition, these layout items are used, where necessary, to indicate the separation of tokens.
As a guide to the use of layout items, note that if a sequence of characters would form a token
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but the sequence is included in a larger sequence which would also form a token, then the larger
token is preferred. The layout items are not tokens, but so that they can be included in the text,
we define the grammar rules for them as well.

The terminals of this grammar are the individual characters of the text. Note that the token
Identifier appears only in the grammar for flocks.

Token −→ BigName | LittleName | GraphicName | String | Bracket | Comma
| Semicolon | Underscore | Terminator | Number | Float | Identifier

BigName −→ BigLetter {NameCharacter}

LittleName −→ LittleLetter {NameCharacter}

GraphicName −→ GraphicCharacter {GraphicCharacter}

String −→ < "> {StringCharacter} < ">

Bracket −→ <{> | <}> [<_> Label] | <(> | <)> | <[> | <]>

Comma −→ <,>

Semicolon −→ <;>

Underscore −→ <_>

Terminator −→ <.>

Number −→ Zero {Zero} | PositiveNumber

Float −→ Decimal
| Decimal < E> <+> Number
| Decimal < E> <-> Number

Decimal −→ Number < .> Number

Label −→ PositiveNumber

NameCharacter −→ BigLetter | LittleLetter | Digit | Underscore

GraphicCharacter −→ <\> | NonBSGraphicChar

NonBSGraphicChar −→ <+> | <-> | <*> |</> | <^> | <#> | <<> | <>> | <=> | <~>
| <&> | <?> | <‘> | <@> | <!> | <$> | <:> | <|> | <’>

BigLetter −→ <A> | <B> | <C> | <D> | <E> | <F> | <G> | <H> | <I>
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| <J> | <K> | <L> | <M> | <N> | <O> | <P> | <Q> | <R>
| <S> | <T> | <U> | <V> | <W> | <X> | <Y> | <Z>

LittleLetter −→ <a> | <b> | <c> | <d> | <e> | <f> | <g> | <h> | <i>
| <j> | <k> | <l> | <m> | <n> | <o> | <p> | <q> | <r>
| <s> | <t> | <u> | <v> | <w> | <x> | <y> | <z>

PositiveNumber −→ {Zero} NonZero {Digit}

Digit −→ Zero | NonZero

NonZero −→ <1> | <2> | <3> | <4> | <5> | <6> | <7> | <8> | <9>

Zero −→ <0>

StringCharacter −→ <\> <\> | <\> <"> | [<\>] NonEscCharacter

LayoutItem −→ LayoutCharacter | Comment

LayoutCharacter −→ < space > | < tab > | < newline >

Comment −→ <%> {Character}

Condition: The sequence {Character} does not contain a newline, but is followed by a
newline.

Character −→ <\> | <"> | NonEscCharacter

NonEscCharacter −→ LayoutCharacter | NonBSGraphicChar | NameCharacter
| Semicolon | Comma | Terminator | <%> | <{> | <}>
| <(> | <)> | <[> | <]>

Identifier −→ QuotedIdent | DbleQuotedIdent | OrdinaryIdent

QuotedIdent −→ <’> {QuoteChar} <’>

QuoteChar −→ <’><’> | Character

Condition: Character may not be ’.

DbleQuotedIdent −→ <"> {DbleQuoteChar} <">

DbleQuoteChar −→ <"><"> | Character

Condition: Character may not be ".
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OrdinaryIdent −→ OrdinaryChar {OrdinaryChar}

OrdinaryChar −→ NameCharacter | GraphicCharacter | Semicolon | Terminator
| <[> | <]> | <{> | <}>

Condition: GraphicCharacter may not be ’.

11.3 Programs

The terminals of the grammars in this and subsequent sections are the tokens defined previously.
For some rules it is necessary to know, not just the name of the token, but also the internal
structure of the token. In this case, the internal structure is given in place of the token name. For
example: if, in a rule, the token ‘Number’ has to be a positive number, then this is denoted by
<PositiveNumber>. If the token has to include a particular string of terminals from the previous
grammar, then this string is enclosed in single quotes. For example: <‘BASE’> indicates that the
token is a BigName consisting of the string ‘BASE’. Similarly, <‘}’ [‘_’ Label]> indicates that the
token is a Bracket consisting of ‘}’ followed by an optional ‘_’ Label. The token name is easily
inferred from the given structure.

Program −→ Module {Module}

Module −→ ExportPart LocalPart
| ExportPart
| LocalPart

Condition: If a module has a LocalPart and an ExportPart, then the ModuleName of
each part must be the same.

ExportPart −→ ExportKind ModuleName <Terminator> {ExportItem}

LocalPart −→ LocalKind ModuleName <Terminator> {LocalItem}

Condition: The LocalPart of a module has the LocalKind MODULE if and only if the module
has no ExportPart.

ExportKind −→ <‘EXPORT’> | <‘CLOSED’>

Condition: Only system modules can have ExportKind CLOSED.

LocalKind −→ <‘LOCAL’> | <‘MODULE’>

ModuleName −→ UserBigName

Condition: ModuleName for a user-defined module cannot be any of Integers,
Rationals, Floats, Numbers, Lists, Sets, Strings, Tables, Units, Flocks, Syntax,
Programs, Scripts, Theories, IO, NumbersIO, FlocksIO, ProgramsIO, ScriptsIO, or
TheoriesIO.
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ExportItem −→ ImportDecl <Terminator>
| LanguageDecl <Terminator>
| ControlDecl <Terminator>

LocalItem −→ ImportDecl <Terminator>
| LiftDecl <Terminator>
| LanguageDecl <Terminator>
| ControlDecl <Terminator>
| Statement <Terminator>

ImportDecl −→ <‘IMPORT’> ModuleName {<Comma> ModuleName}

LiftDecl −→ <‘LIFT’> ModuleName {<Comma> ModuleName}

Condition: A LIFT declaration can only appear in the local part of a module which has an
export part.

At this stage, the overall module structure of a (potential) program can be discerned. To
explain this, we introduce the following definitions.

A part of a module refers to a module N if it contains a declaration of the form

IMPORT N.

or

LIFT N.

A module M refers to a module N if either the local or export part of M refers to N.
The relation depends upon between modules is defined to be the transitive closure of the

relation refers to.
Then the (potential) program must consist of a set {Mi}ni=0 of modules with the property that

{Mi}ni=1 is the set of modules upon which the distinguished module M0 depends. We say M0 is the
main module of the program.

Furthermore, the following module condition can now be checked.

M1: No module may depend upon itself.

Language Declarations

LanguageDecl −→ BaseDecl
| ConstructorDecl
| ConstantDecl
| FunctionDecl
| PropositionDecl
| PredicateDecl
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BaseDecl −→ <‘BASE’> UserNameSeq

ConstructorDecl −→ <‘CONSTRUCTOR’> ConstrDecl {<Comma> ConstrDecl}

ConstrDecl −→ UserName <‘/’> <PositiveNumber>

ConstantDecl −→ <‘CONSTANT’> ConstDecl {<Semicolon> ConstDecl}

ConstDecl −→ UserNameSeq <‘:’> Type

Note that the declaration of integer constants and floating-point constants is treated spe-
cially by the system. For these, UserNameSeq is a sequence of Numbers (not UserNames).

FunctionDecl −→ <‘FUNCTION’> FuncDecl {<Semicolon> FuncDecl}

FuncDecl −→ UserNameSeq
[<‘:’> FunctionSpec(n) <‘(’> <PositiveNumber> <‘)’>]
<‘:’> Type {<‘*’> Type}(n−1) <‘->’> Type

Condition: The declaration must be transparent, that is, every parameter appearing in
the declaration must also appear in the range type.

FunctionSpec(1) −→ <‘Fx’> | <‘Fy’> | <‘xF’> | <‘yF’>

FunctionSpec(2) −→ <‘xFx’> | <‘xFy’> | <‘yFx’>

PropositionDecl −→ <‘PROPOSITION’> UserNameSeq

PredicateDecl −→ <‘PREDICATE’> PredDecl {<Semicolon> PredDecl}

PredDecl −→ UserNameSeq [<‘:’> PredicateSpec(n)]
<‘:’> Type {<‘*’> Type}(n−1)

PredicateSpec(1) −→ <‘Pz’> | <‘zP’>

PredicateSpec(2) −→ <‘zPz’>

UserNameSeq −→ UserName {<Comma> UserName}

UserName −→ UserBigName | UserGraphicName

UserBigName −→ <BigName>

Condition: BigName is not one of the reserved words: EXPORT, CLOSED, LOCAL,
MODULE, IMPORT, LIFT, THEORY, BASE, CONSTRUCTOR, CONSTANT, FUNCTION, PROPOSITION,
PREDICATE, DELAY, UNTIL, GROUND, NONVAR, TRUE, ALL, SOME, IF, THEN, ELSE.
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UserGraphicName −→ <GraphicName>

Condition: GraphicName is not one of the reserved words: :, <-, ->, <->, &, ~, \/, |.

At this point, the symbols which have been declared in, or imported into, the various modules
can be determined. We now give the appropriate definitions.

A symbol is a base, constructor, constant, function, proposition, or predicate.
A type symbol is a base or constructor. Other symbols are non-type symbols.
The local part of a module M 1-imports a symbol S via a module N if S has a declaration in

the export part of N and the local part of M refers to N.
The export part of a module M 1-imports a symbol S via a module N if S has a declaration in

the export part of N and either (i) the export part of M refers to N, or (ii) the local part of M refers
to N via a LIFT declaration, S is a type symbol, and there is a declaration for S in the export part
of M. In the latter case, the export part of M also 1-redeclares S.

The local part of a module M n-imports, n > 1, a symbol S via a module N if there is a module
L such that the export part of L (n− 1)-imports S via N and the local part of M refers to L.

The export part of a module M n-imports, n > 1, a symbol S via a module N if there is a
module L such that the export part of L (n− 1)-imports S via N and either (i) the export part of
M refers to L, or (ii) the local part of M refers to L via a LIFT declaration, S is a type symbol, and
there is a declaration for S in the export part of M. In the latter case, the export part of M also
n-redeclares S.

A part of a module M imports a symbol S via a module N if the part of M n-imports S via N,
for some n ≥ 1.

A module M imports a symbol S via a module N if either the local or export part of M imports
S via N.

The export part of a module redeclares a type symbol S if it n-redeclares S, for some n ≥ 1.
The export part of a module declares a type symbol if it contains a declaration for, but does

not redeclare, the symbol. It declares a non-type symbol if it contains a declaration for the
symbol.

The local part of a module declares a symbol if it contains a declaration for the symbol.
A module declares a symbol if either the local or export part of the module declares the

symbol.
A part of a module M imports a symbol S from a module N if the part of M imports S via N and

the export part of N declares S.
A module M imports a symbol S from a module N if either the local or export part of M imports

S from N.
A symbol is accessible to the local (resp., export) part of a module if it is either declared in,

or imported into, the module (resp., export part of the module).
A module exports a symbol if the symbol is accessible to the export part of the module.
The following module conditions can now be checked.

M2: For every name appearing in a part of a module, there must be a symbol having that name
accessible to that part.

M3: Distinct symbols cannot be declared in the same module with the same category, name, and
arity.
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Types

Type −→ Parameter
| Base
| Constructor(n) <‘(’> TypeSeq(n) <‘)’>

TypeSeq(n) −→ Type {<Comma> Type}(n−1)

Base −→ UserName

Condition: A symbol with name UserName is declared or imported as a base.

Constructor(n) −→ UserName

Condition: A symbol with name UserName is declared or imported as a constructor of
arity n.

Parameter −→ <LittleName>

The following module condition can now be checked.

M4: In a module, a type in a constant declaration or the range type in a function declaration
must be either a base type declared in the module or a type with a top-level constructor
declared in the module.

Control Declarations

ControlDecl −→ <‘DELAY’> ContDecl {<Semicolon> ContDecl}

Condition: A DELAY declaration for a predicate can only appear in the module in which
the predicate is declared.

ContDecl −→ Atom <‘UNTIL’> Cond

Condition: Atom cannot be a proposition. No pair of Atom’s in the set of DELAY decla-
rations for a predicate can have a common instance.

Cond −→ Cond1
| Cond1 <‘&’> AndSeq
| Cond1 <‘\/’> OrSeq

Cond1 −→ <‘NONVAR’> <‘(’> Variable <‘)’>
| <‘GROUND’> <‘(’> Variable <‘)’>
| <‘TRUE’>
| <‘(’> Cond <‘)’>

AndSeq −→ Cond1 | Cond1 <‘&’> AndSeq
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OrSeq −→ Cond1 | Cond1 <‘\/’> OrSeq

Statements

At this point, the overall module structure of the (potential) program has been determined, as
have the language and control declarations that each module contains. However, before we go on
to give the grammar for statements, we must pause and give some more definitions. The reason
is that statements are formulas in certain polymorphic many-sorted languages and we need to
define these languages first.

A module is closed if its export part contains a CLOSED declaration and open if it is not closed.
Let M be a module in a (potential) program P.

1. The language of M wrt P is the polymorphic many-sorted language given by the language
declarations of all symbols accessible to the local part of M.

2. The export language of M wrt P is the polymorphic many-sorted language given by the
language declarations of all symbols accessible to the export part of M.

3. The goal language of P is the language of the main module M0, if M0 is open, or the export
language of M0, if M0 is closed.

Statements and goals are written in a language more general in several ways than that con-
sidered in appendix A. They may contain commits. These can be ignored for the purposes of
language checking. Conditionals and intensional set terms are handled by replacing each occur-
rence of them by the formulas which give their meaning. Any expressions involving occurrences
of operators are rewritten into the standard logical syntax. After this preprocessing, statements
and goals are now in a suitable form for checking to see if they are in the appropriate language.

Statement −→ Atom [<‘<-’> Body]

Condition: A statement (ignoring any commits) must be a formula in the language of the
module in which it occurs.
A statement must satisfy the head condition, that is, the tuple of types of the arguments
of the head in the statement must be a variant of the type declared for the predicate in the
head.

Body −→ [CFormula(f)] <‘|’> [CFormula(f1)]
| CFormula(f)

CFormula(0) −→ <‘(’> CFormula(f) <‘)’>
| <‘{’> CFormula(f) <‘}’ [‘_’ Label]>

CFormula(2) −→ CFormula(f) <‘&’> CFormula(f1)

Condition: f ≤ 1, f1 ≤ 2.

CFormula(f) −→ Formula(f)
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Formula(0) −→ Atom
| RangeFormula
| <‘(’> Formula(f) <‘)’>

Formula(1) −→ <‘~’> Formula(f)
| <‘SOME’> <‘[’> VariableSeq <‘]’> Formula(f)
| <‘ALL’> <‘[’> VariableSeq <‘]’> Formula(f)

Condition: f ≤ 1.

Formula(2) −→ Formula(f) <‘&’> Formula(f1)
| <‘IF’> [<‘SOME’> <‘[’> VariableSeq <‘]’>] Formula(f2)
<‘THEN’> ThenPart [<‘ELSE’> Formula(f1)]

Condition: f ≤ 1, f1 ≤ 2.

Formula(3) −→ Formula(f) <‘\/’> Formula(f1)

Condition: f ≤ 2, f1 ≤ 3.

Formula(4) −→ Formula(f) <‘<-’> Formula(f1)
| Formula(f) <‘->’> Formula(f1)
| Formula(f) <‘<->’> Formula(f)

Condition: f ≤ 3, f1 ≤ 4.

ThenPart −→ Formula(f)
| Formula(f) <‘&’> ThenPart
| <‘IF’> Formula(f1) <‘THEN’> ThenPart

Condition: f ≤ 1.

Atom −→ Proposition
| PredicateNoInd(n) <‘(’> Term {<Comma> Term}(n−1) <‘)’>
| PredicateInd(1,‘Pz’) Term
| Term PredicateInd(1,‘zP’)
| Term PredicateInd(2,‘zPz’) Term

RangeFormula −→ Term Comparator Term Comparator Term

Comparator −→ <‘<’> | <‘=<’>

Term −→ Term(p)

Term(∞) −→ Variable
| Constant
| <Number>
| <Float>
| < String>
| List
| Set
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| <‘(’> Term <‘)’>
| FunctionNoInd(n) <‘(’> Term {<Comma> Term}(n−1) <‘)’>

Term(p) −→ FunctionInd(1,‘Fx’,p) Term(q)
| FunctionInd(1,‘Fy’,p) Term(r)
| Term(q) FunctionInd(1,‘xF’,p)
| Term(r) FunctionInd(1,‘yF’,p)
| Term(q) FunctionInd(2,‘xFx’,p) Term(q1)
| Term(q) FunctionInd(2,‘xFy’,p) Term(r)
| Term(r) FunctionInd(2,‘yFx’,p) Term(q)

Condition: p < q, p < q1, and p ≤ r.

Constant −→ UserName

Condition: A symbol with name UserName is declared or imported as a constant.

FunctionInd(n,i,p) −→ UserName

Condition: A symbol with name UserName is declared or imported as a function with
arity n and indicator i(p).

FunctionNoInd(n) −→ UserName

Condition: A symbol with name UserName is declared or imported as a function with
arity n and no indicator.

Proposition −→ UserName

Condition: Either (i) a symbol with name UserName is declared or imported as a propo-
sition, or (ii) UserName is True or False.

PredicateInd(n,i) −→ UserName

Condition: Either (i) a symbol with name UserName is declared or imported as a predicate
with arity n and indicator i, or (ii) UserName is = or ∼=, n is 2, and i is zPz.

PredicateNoInd(n) −→ UserName

Condition: A symbol with name UserName is declared or imported as a predicate with
arity n and no indicator.

List −→ <‘[’> [ListExpr] <‘]’ >

ListExpr −→ Term
| Term <Comma> ListExpr
| Term <‘|’> List
| Term <‘|’> Variable
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Set −→ <‘{’> [SetExpr] <‘}’ >
| <‘{’> Term <‘:’> Formula(f) <‘}’ >

SetExpr −→ Term
| Term <Comma> SetExpr
| Term <‘|’> Set
| Term <‘|’> Variable

VariableSeq −→ <LittleName> {<Comma> <LittleName>}

Variable −→ <LittleName> | <Underscore> [<LittleName>]

The final module condition can now be checked.

M5: A module must declare every proposition or predicate defined in that module.

11.4 Goals

Goal −→ <‘<-’> GoalBody

Condition: A goal (ignoring any commits) must be a formula in the goal language of the
program.

GoalBody −→ Body
| <‘:’> Body
| VariableSeq <‘:’> Body

Condition: Each variable in VariableSeq must occur in Body.

11.5 Theories

Theory −→ <‘THEORY’> TheoryName <Terminator> {TheoryItem}

TheoryName −→ <UserBigName>

Condition: TheoryName cannot be any of Integers, Rationals, Floats, Numbers,
Lists, Sets, Strings, Tables, Units, Flocks, Syntax, Programs, Scripts, Theories,
IO, NumbersIO, FlocksIO, ProgramsIO, ScriptsIO, or TheoriesIO.

TheoryItem −→ ImportDecl <Terminator>
| LanguageDecl <Terminator>
| FirstOrderFormula(f) <Terminator>
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Condition: A FirstOrderFormula must be a formula in the language of the theory, which
is the polymorphic many-sorted language given by the language declarations of all symbols
accessible to the theory.

FirstOrderFormula(0)−→ Atom
| <‘(’> FirstOrderFormula(f) <‘)’>

FirstOrderFormula(1)−→ <‘~’> FirstOrderFormula(f)
| <‘SOME’> <‘[’> VariableSeq <‘]’> FirstOrderFormula(f)
| <‘ALL’> <‘[’> VariableSeq <‘]’> FirstOrderFormula(f)

Condition: f ≤ 1.

FirstOrderFormula(2)−→ FirstOrderFormula(f) <‘&’> FirstOrderFormula(f1)

Condition: f ≤ 1, f1 ≤ 2.

FirstOrderFormula(3)−→ FirstOrderFormula(f) <‘\/’> FirstOrderFormula(f1)

Condition: f ≤ 2, f1 ≤ 3.

FirstOrderFormula(4)−→ FirstOrderFormula(f) <‘<-’> FirstOrderFormula(f1)
| FirstOrderFormula(f) <‘->’> FirstOrderFormula(f1)
| FirstOrderFormula(f) <‘<->’> FirstOrderFormula(f)

Condition: f ≤ 3, f1 ≤ 4.

11.6 Flocks

Flock −→ {Unit <Terminator>}

Unit −→ <Identifier>
| <Identifier> <‘(’> <‘)’>
| <Identifier> <‘(’> UnitSeq <‘)’>

UnitSeq −→ Unit {<Comma> Unit}

11.7 Definitions for the Ground Representation

In this section, we give some auxiliary definitions for the ground representation. These definitions
complete the specification of 12 associated predicates in the module Syntax. To give these
definitions compactly, it is convenient to use a simplified grammar similar to the one previously
used to give the syntax of Gödel. In particular, we continue to use | to denote alternatives and
[...] to mean zero or one occurrence.

StandardStatement −→ Atom <- [StandardBody]

NormalStatement −→ Atom <- [NormalBody]
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DefiniteStatement −→ Atom <- [DefiniteBody]

StandardResultant −→ [StandardBody] <- [StandardBody]

NormalResultant −→ [NormalBody] <- [NormalBody]

DefiniteResultant −→ [DefiniteBody] <- [DefiniteBody]

StandardGoal −→ <- [StandardBody]

NormalGoal −→ <- [NormalBody]

DefiniteGoal −→ <- [DefiniteBody]

StandardBody −→ StandardFormula
| {StandardBody}_Label
| StandardBody & StandardBody

StandardFormula −→ Atom
| ~ StandardFormula
| SOME [VariableSeq] StandardFormula
| ALL [VariableSeq] StandardFormula
| StandardFormula & StandardFormula
| IF StandardFormula THEN StandardFormula [ELSE StandardFormula]
| StandardFormula \/ StandardFormula
| StandardFormula <- StandardFormula
| StandardFormula -> StandardFormula
| StandardFormula <-> StandardFormula

NormalBody −→ NormalFormula
| {NormalBody}_Label
| NormalBody & NormalBody

NormalFormula −→ Atom
| ~ Atom
| NormalFormula & NormalFormula
| IF NormalFormula THEN NormalFormula [ELSE NormalFormula]

DefiniteBody −→ DefiniteFormula
| {DefiniteBody}_Label
| DefiniteBody & DefiniteBody

DefiniteFormula −→ Atom
| DefiniteFormula & DefiniteFormula
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Semantics

In this chapter, we define the declarative and procedural semantics of Gödel programs.1

12.1 Declarative Semantics

We begin with some definitions.
Let P be a Gödel program. The flat form of P is the program obtained from P by replacing

each occurrence of the declared name of a symbol in P by the flat name of the symbol.
The (polymorphic many-sorted) program underlying P is obtained by using all the language

declarations of the flat form of P as the language of the (polymorphic many-sorted) program
and using all the statements of the flat form of P as its statements, except that all commits are
removed and all conditionals and intensional set terms are replaced by the formulas giving their
meanings, as discussed earlier. (Polymorphic many-sorted) goals are formulas in the language of
the (polymorphic many-sorted) program underlying P of the form <- W, where W does not contain
commits, conditionals, or intensional set terms. Any goal to P can be transformed to a goal for
the program underlying P by deleting all commits, replacing any conditionals or intensional set
terms by the formulas giving their meanings, and replacing the declared names of all symbols in
the goal by their flat names.

Now let us turn to the issue of giving a declarative semantics to Gödel programs. The most
direct and satisfactory way of giving a declarative semantics to a Gödel program is to give its
intended interpretation. For the system modules of Gödel, this is what is done.2 While it would
be better to use a formal language for the purpose of specifying the intended interpretation,
the more informal presentation adopted in this book serves almost as well. However, for user-
defined modules, matters are more complicated as there is no direct way to state the intended
interpretation for these (nor is there in any other existing logic programming language). In fact,
given a Gödel program P, what is actually specified by the programmer is a theory which is
the union of the completions of all the user-defined predicates in the (polymorphic many-sorted)

1This chapter is incomplete.
2Actually, since Gödel uses abstract data types, not all of the intended interpretation can be given, since

symbols declared in the local parts of closed modules are hidden. For example, for the module Strings, the
constants and functions used to represent strings are declared in the local part of the module and are never seen
by the programmer. Thus, in general, all symbols and their meaning in the intended interpretation, except those
symbols that are declared in the local parts of closed modules, can be specified.
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program underlying P and all the equaliy axioms for user-defined types. (See appendix A.)
This theory indirectly specifies the intended interpretation of the user-defined symbols since the
intended interpretation is known (or at least assumed) to be one of the models of this theory.

Thus the declarative semantics of a Gödel program is defined to be the set of interpretations
such that each interpretation is an extension of the intended interpretation of the system modules
imported into the program and is also a model of the theory associated with the program, as
defined above. An implementation of Gödel must be sound, that is, only compute answers which
are correct wrt these interpretations. It is preferable that an implementation of Gödel be as
complete as possible, that is, compute as many answers which are correct wrt these interpretations
as possible.

12.2 Procedural Semantics

First, we discuss DELAY declarations. In the grammar for Cond given in chapter 11, the reserved
word & stands for conjunction, \/ stands for disjunction, TRUE stands for the truth value true,
NONVAR is true if and only if its argument is a non-variable term, and GROUND is true if and only if
its argument is a ground term. Now suppose an atom A is an instance by a substitution θ of an
Atom (that is, A = Atom θ) in a DELAY declaration. Then we say A satisfies the corresponding
condition Cond in this DELAY declaration if, when θ is applied to the variables in Cond, the
resulting condition has truth value true using the above meanings given to the various reserved
words. Otherwise, we say A does not satisfy the corresponding condition.

Then DELAY declarations cause calls to be delayed according to the following rules.

• An atom in a goal is delayed if it has a common instance with some Atom in a DELAY

declaration but is not an instance of this Atom.

• An atom in a goal is delayed if it is an instance of an Atom in a DELAY declaration but does
not satisfy the corresponding condition Cond.

Next we discuss pruning.

Definition Let T be a search tree, G0 a non-leaf node in T , and G1 a child of G0. Then G1

is an l-child of G0 if either

1. G0 contains a commit labelled l and the selected literal in G0 is in the scope of this commit,
or

2. G1 is derived from G0 using an input statement which contains a commit labelled l (after
standardisation apart of the commit labels).

We say that G1 is an l-child of the first kind (resp., of the second kind) if G0 satisfies condition 1
(resp., 2) above.

Now we can define the concept of a pruning step, which gives the procedural meaning of the
commit.

Definition Let S be a subtree of a search tree. We say that the tree S ′ is obtained from S
by a pruning step in S at G0 if the following conditions are satisfied.
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1. S has a node G0 with distinct l-children G1 and G2, and there is an l-free node G′

2 in S
which is either equal to or below G2.

2. S ′ is obtained from S by removing the subtree of S rooted at G1.

We say that G1 is the cut node and the pair (G2, G
′

2) is an explanation for the pruning step.





Chapter 13

System Modules and Utilities

The system modules Integers, Rationals, Floats, Numbers, Lists, Sets, Strings, Tables,
Units, Flocks, Syntax, Programs, Scripts, Theories, IO, NumbersIO, FlocksIO, ProgramsIO,
ScriptsIO, and TheoriesIO are provided by Gödel. The export parts of these are given in this
chapter. The figure over the page shows the relationships between the system modules. An arrow
from one module to another means the first module refers to the second.
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13.1 Integers

EXPORT Integers.

% Module providing the integers and some standard functions and predicates

% with integer arguments.

%

% This module conforms to the standard for the data type Integer in Version

% 4.0 (August 1992) of the Language Independent Arithmetic Standard (LIAS)

% ISO/IEC CD 10967-1:1992 (JTC1/SC22/WG11 N318, ANSI X3T2 92-064).

%

% The intended interpretation of the symbols in this module is as follows.

%

% The intended domain of the interpretation is the integers Z. The constant

% 0 is interpreted as the integer 0, the constant 1 is interpreted as the

% integer 1, and so on. The various functions, such as +, -, etc., have their

% usual interpetation as mappings from Z x Z (or Z, as appropriate) into Z.

% Similarly, the various predicates, such as >, <, etc., have their usual

% interpretation on Z x Z. The details are given below.

%

% The LIAS boolean bounded is false. Thus infinite precision integer

% arithmetic is provided.

BASE Integer.

%

% Type of the integers.

% CONSTANT 0, 1, 2, ... : Integer.

FUNCTION ^ : yFx(540) : Integer * Integer -> Integer.

%

% Exponentiation.

%

% ^ is defined by

% x^y = x raised to the power y, if y >= 0

% = 0, if y < 0.

%

% The function ^ is defined to be 0 when y < 0 to make it a total function.

% This result will never be used. If exponentiation with y < 0 is attempted,

% the computation will halt with an error message.
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FUNCTION - : Fy(530) : Integer -> Integer.

%

% Unary minus.

%

% The function - corresponds to the LIAS function neg.

FUNCTION * : yFx(520) : Integer * Integer -> Integer.

%

% Multiplication.

%

% The function * corresponds to the LIAS function mul.

FUNCTION Div : yFx(520) : Integer * Integer -> Integer.

%

% Integer division.

%

% The function Div corresponds to the LIAS functions rem and div^1. The LIAS

% rounding function rnd used is "round towards minus infinity", that is,

% rnd(x) = [x], where [] is the floor function.

FUNCTION Mod : yFx(520) : Integer * Integer -> Integer.

%

% Modulus.

%

% Div and Mod have the defining properties given by the division algorithm:

%

% if y ~= 0, then x = (x Div y)*y + (x Mod y)

% and

% 0 =< x Mod y < y, if y > 0

% 0 >= x Mod y > y, if y < 0

%

% if y = 0, then x Div y = 0 and x Mod y = 0.

%

% The functions Div and Mod are defined to be 0 when y = 0 to make them total

% functions. These results will never be used. If division by 0 is attempted,

% the computation will halt with an error message.

%

% The function Mod corresponds to the LIAS function mod.

FUNCTION + : yFx(510) : Integer * Integer -> Integer.

%

% Addition.

%

% The function + corresponds to the LIAS function add.
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FUNCTION - : yFx(510) : Integer * Integer -> Integer.

%

% Subtraction.

%

% The function - corresponds to the LIAS function sub.

FUNCTION Abs : Integer -> Integer.

%

% Absolute value.

%

% The function Abs corresponds to the LIAS function abs.

FUNCTION Max : Integer * Integer -> Integer.

%

% Maximum.

FUNCTION Min : Integer * Integer -> Integer.

%

% Minimum.

PREDICATE > : zPz :

Integer % An integer greater than the integer in the second argument.

* Integer. % An integer.

% The predicate > corresponds to the LIAS predicate gtr.

PREDICATE < : zPz :

Integer % An integer less than the integer in the second argument.

* Integer. % An integer.

% The predicate < corresponds to the LIAS predicate lss.

PREDICATE >= : zPz :

Integer % An integer greater than or equal to the integer in the second

% argument.

* Integer. % An integer.

% The predicate >= corresponds to the LIAS predicate geq.
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PREDICATE =< : zPz :

Integer % An integer less than or equal to the integer in the second

% argument.

* Integer. % An integer.

% The predicate =< corresponds to the LIAS predicate leq.

PREDICATE Interval :

Integer % An integer less than or equal to the integer in the second

% argument.

* Integer % An integer less than or equal to the integer in the third

% argument.

* Integer. % An integer.

DELAY Interval(x,_,z) UNTIL GROUND(x) & GROUND(z).
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13.2 Rationals

EXPORT Rationals.

% Module providing the rationals and some standard functions and predicates

% with rational arguments.

%

% The intended interpretation of the symbols in this module is as follows.

%

% The intended domain is the rationals Q. The various functions, such as +, -,

% etc., have their usual interpetation as mappings from Q x Q (or Q, as

% appropriate) into Q. Similarly, the various predicates, such as >, <, etc.,

% have their usual interpretation on Q x Q. The details are given below.

%

% Note that infinite precision rational arithmetic is provided.

IMPORT Integers.

BASE Rational.

%

% Type of the rationals.

FUNCTION // : yFx(520) : Integer * Integer -> Rational.

%

% For integers x and y, x//y is the rational obtained from the quotient of x by

% y.

%

% Note that // gives conversion from Integer to Rational in that x//1 is the

% rational corresponding to the integer x. Conversion from Rational to Integer

% can be achieved with a call of the form x//1 = y, where y is a rational

% reducible to the form N/1, for some integer N.

%

% // is defined to be 0 when the second argument is 0 to make it a total

% function. This result will never be used. If // is called with the second

% argument 0, the computation will halt with an error message.

FUNCTION ^ : yFx(540) : Rational * Integer -> Rational.

%

% Exponentiation.
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%

% ^ is defined to be 0 when the first argument is 0 and the second argument

% is negative to make it a total function. This result will never be used. If

% such an exponentiation is attempted, the computation will halt with an error

% message.

FUNCTION - : Fy(530) : Rational -> Rational.

%

% Unary minus.

FUNCTION * : yFx(520) : Rational * Rational -> Rational.

%

% Multiplication.

FUNCTION / : yFx(520) : Rational * Rational -> Rational.

%

% Division.

%

% / is defined to be 0 when the second argument is 0 to make it a total

% function. This result will never be used. If division by 0 is attempted,

% the computation will halt with an error message.

FUNCTION + : yFx(510) : Rational * Rational -> Rational.

%

% Addition.

FUNCTION - : yFx(510) : Rational * Rational -> Rational.

%

% Subtraction.

FUNCTION Abs : Rational -> Rational.

%

% Absolute value.

FUNCTION Max : Rational * Rational -> Rational.

%

% Maximum.
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FUNCTION Min : Rational * Rational -> Rational.

%

% Minimum.

PREDICATE > : zPz :

Rational % A rational greater than the rational in the second argument.

* Rational. % A rational.

PREDICATE < : zPz :

Rational % A rational less than the rational in the second argument.

* Rational. % A rational.

PREDICATE >= : zPz :

Rational % A rational greater than or equal to the rational in the second

% argument.

* Rational. % A rational.

PREDICATE =< : zPz :

Rational % A rational less than or equal to the rational in the second

% argument.

* Rational. % A rational.

PREDICATE StandardRational :

Rational % A rational.

* Integer % The numerator of the rational in standard form equal to this

% rational.

* Integer. % The denominator of the rational in standard form equal to this

% rational.

DELAY StandardRational(x,_,_) UNTIL GROUND(x).
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13.3 Floats

EXPORT Floats.

% Module providing floating-point numbers and some standard functions and

% predicates with floating-point arguments.

%

% This module conforms to the standard for the data type Floating-Point in

% Version 4.0 (August 1992) of the Language Independent Arithmetic Standard

% (LIAS) ISO/IEC CD 10967-1:1992 (JTC1/SC22/WG11 N318, ANSI X3T2 92-064).

% It also conforms to the ANSI/IEEE Standard for Binary Floating-Point

% Arithmetic 754-1985.

%

% The four IEEE Standard 754-1985 rounding functions (round toward nearest,

% round toward plus infinity, round toward minus infinity, and round toward

% zero) are provided by compiler options. The default rounding function is

% round toward nearest.

%

% The intended interpretation of the symbols in this module is as follows.

%

% The intended domain of the interpretation is the finite set F of floating-

% point numbers characterised by a fixed radix, a fixed precision, and fixed

% smallest and largest exponent. Thus F is the finite set of numbers of the

% form either 0 or s0.f1...fp * r^e, where r is the radix, p is the precision,

% e is the exponent, s is either + or -, and each fi satisfies 0 =< fi < r.

% Note that the LIAS boolean denorm is true. Thus denormalised floating-point

% numbers are provided.

%

% The language contains finitely many constants, exactly one corresponding to

% each floating-point number in F. However, for the convenience of the user,

% there is some syntactic sugar used instead of the names of these constants.

% This is the usual decimal number notation, with or without an exponent.

% Typical decimal numbers without exponent are 3.1416 and 0, and typical

% decimal numbers with exponent are -2.345619E-12 and 674328.89E+2. Such decimal

% numbers are converted (according to the ANSI/IEEE standard 754-1985) by the

% system to floating-point numbers in the form above. Then the convention is

% that a decimal number is syntactic sugar for the constant whose interpretation

% is the floating-point number obtained from the decimal number. This means that

% there is more than one way of denoting each of these constants. For example,

% both 3.1416 and 314.16E-2 denote the same constant. Similarly, when answers

% are displayed by the system, floating-point numbers are converted back to the

% more convenient decimal form.
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%

% The various functions, such as +, -, etc., have their usual interpretation

% as mappings from F x F (or F, as appropriate) into F. Similarly, the various

% predicates, such as >, <, etc., have their usual interpretation on F x F.

% The details are given below.

IMPORT Integers.

BASE Float.

%

% Type of the floating-point numbers.

% CONSTANT Finitely many constants, one for each number in the finite set F

% of floating-point numbers determined by the radix, precision, and smallest

% and largest exponent.

FUNCTION ^ : yFx(540) : Float * Float -> Float.

%

% Exponentiation.

%

% ^ is defined by

% x^y = Exp(y*Log(x)), if x>0 and no underflow or overflow occurs

% = 0, otherwise.

% The function ^ is defined to be 0 when x =< 0 or underflow or overflow occurs

% to make it a total function. This result will never be used. If exponentiation

% is attempted with x =< 0 or underflow or overflow occurs, the computation

% will halt with an appropriate error message.

FUNCTION - : Fy(530) : Float -> Float.

%

% Unary minus.

%

% The function - corresponds to the LIAS function neg.

FUNCTION * : yFx(520) : Float * Float -> Float.

%

% Multiplication.

%

% * can overflow or underflow. In either case, the multiplication is defined to

% be 0 to make * total. Such a result will never be used. If a multiplication
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% leads to an underflow or overflow, the computation will halt with an

% appropriate error message.

%

% The function * corresponds to the LIAS function mul.

FUNCTION / : yFx(520) : Float * Float -> Float.

%

% Division.

%

% / can overflow, underflow, or have a zero divisor. In all such cases, the

% division is defined to be 0 to make / total. Such a result will never be used.

% If a division leads to an underflow, overflow, or a zero divisor, the

% computation will halt with an appropriate error message.

%

% The function / corresponds to the LIAS function div.

FUNCTION + : yFx(510) : Float * Float -> Float.

%

% Addition.

%

% + can overflow or underflow. In either case, the addition is defined to be

% 0 to make + total. Such a result will never be used. If an addition leads to

% an underflow or overflow, the computation will halt with an appropriate error

% message.

%

% The function + corresponds to the LIAS function add. The LIAS approximate

% addition function add* is true (exact) addition.

FUNCTION - : yFx(510) : Float * Float -> Float.

%

% Subtraction.

%

% - can overflow or underflow. In either case, the subtraction is defined to

% be 0 to make - total. Such a result will never be used. If a subtraction

% leads to an underflow or overflow, the computation will halt with an

% appropriate error message.

%

% The function - corresponds to the LIAS function sub.

FUNCTION Abs : Float -> Float.

%

% Absolute value.

%

% The function Abs corresponds to the LIAS function abs.
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FUNCTION Max : Float * Float -> Float.

%

% Maximum.

FUNCTION Min : Float * Float -> Float.

%

% Minimum.

FUNCTION Sqrt : Float -> Float.

%

% Square root.

%

% Sqrt is defined to be 0 when its argument is negative to make it total. Such

% a result will never be used. In such a case, the computation will halt with

% an appropriate error message.

%

% The function Sqrt corresponds to the LIAS function sqrt.

FUNCTION Sign : Float -> Float.

%

% Sign(x) = 1, if x>=0

% -1, otherwise.

%

% The function Sign corresponds to the LIAS function sign.

FUNCTION Fraction : Float -> Float.

%

% The fraction part s0.f1...fp of a non-zero floating-point number

% s0.f1...fp * r^e or 0 for the floating-point number 0.

%

% The function Fraction corresponds to the LIAS function fraction.

FUNCTION Scale : Float * Integer -> Float.

%

% Scale scales a floating-point number in the first argument by an integer

% power of the radix, where the integer is in the second argument. Scale is

% defined to be 0 when underflow or overflow occurs to make it a total function.

% Such a result will never be used. If underflow or overflow occurs, the

% computation will halt with an error message.

%

% The function Scale corresponds to the LIAS function scale.
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FUNCTION Successor : Float -> Float.

%

% Successor returns the closest number in F greater than its argument.

% Successor is defined to be 0 when overflow occurs to make it a total function.

% Such a result will never be used. If overflow occurs, the computation will

% halt with an error message.

%

% The function Successor corresponds to the LIAS function succ.

FUNCTION Predecessor : Float -> Float.

%

% Predecessor returns the closest number in F less than its argument.

% Predecessor is defined to be 0 when overflow occurs to make it a total

% function. Such a result will never be used. If overflow occurs, the

% computation will halt with an error message.

%

% The function Predecessor corresponds to the LIAS function pred.

FUNCTION UnitInLastPlace : Float -> Float.

%

% UnitInLastPlace gives the weight of the least significant digit of a non-zero

% argument. UnitInLastPlace is defined to be 0 when its argument is 0 or

% underflow occurs to make it a total function. Such a result will never be

% used. If its argument is 0 or underflow occurs, the computation will halt

% with an error message.

%

% The function UnitInLastPlace corresponds to the LIAS function ulp.

FUNCTION Truncate : Float * Integer -> Float.

%

% Truncate zeros out the low (p - n) digits of the argument, where p is the

% precision and n is the second argument. Truncate is defined to be 0 when its

% second argument is non-positive to make it a total function. Such a result

% will never be used. If its second argument is non-positive, the computation

% will halt with an error message.

%

% The function Truncate corresponds to the LIAS function trunc.

FUNCTION Round : Float * Integer -> Float.

%

% Round rounds its argument to n significant digits; the low (p - n) digits

% are all zeros, where p is the precision and n is the second argument. Round

% is defined to be 0 when its second argument is non-positive or underflow
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% occurs to make it a total function. Such a result will never be used. If its

% second argument is non-positive or overflow occurs, the computation will halt

% with an error message.

%

% The function Round corresponds to the LIAS function round.

FUNCTION IntegerPart : Float -> Float.

%

% IntegerPart returns (in floating-point form) the integer part of a floating

% point number.

%

% The function IntegerPart corresponds to the LIAS function intpart.

FUNCTION FractionalPart : Float -> Float.

%

% FractionalPart returns the value of its argument minus its integer part.

%

% The function FractionalPart corresponds to the LIAS function fractpart.

FUNCTION Sin : Float -> Float.

%

% Sine.

FUNCTION Cos : Float -> Float.

%

% Cosine.

FUNCTION Tan : Float -> Float.

%

% Tangent.

%

% Tan is defined to be 0 when overflow occurs to make it total. Such a result

% will never be used. If overflow occurs, the computation will halt with an

% error message.

FUNCTION ArcSin : Float -> Float.

%

% ArcSine.

%

% ArcSin is defined to be 0 when its argument is outside the range [-1,1] to

% make it total. Such a result will never be used. If ArcSin is called with

% such an argument, the computation will halt with an error message.
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FUNCTION ArcCos : Float -> Float.

%

% ArcCosine.

%

% ArcCos is defined to be 0 when its argument is outside the range [-1,1] to

% make it total. Such a result will never be used. If ArcCos is called with

% such an argument, the computation will halt with an error message.

FUNCTION ArcTan : Float -> Float.

%

% ArcTangent.

FUNCTION Exp : Float -> Float.

%

% Exponential.

%

% Exponential is defined to be 0 when underflow or overflow occurs to make it

% total. Such a result will never be used. If underflow or overflow occurs,

% the computation will halt with an error message.

FUNCTION Log : Float -> Float.

%

% Natural logarithm.

%

% Log is defined to be 0 when its argument is not greater than 0 or underflow

% or overflow occurs to make it total. Such a result will never be used. In such

% cases, the computation will halt with an error message.

FUNCTION Log10 : Float -> Float.

%

% Base 10 logarithm.

%

% Log10 is defined to be 0 when its argument is not greater than 0 or underflow

% or overflow occurs to make it total. Such a result will never be used. In such

% cases, the computation will halt with an error message.

PREDICATE IntegerToFloat :

Integer % An integer.

* Float. % The floating-point number resulting from the conversion of this

% integer.

DELAY IntegerToFloat(x,_) UNTIL GROUND(x).

% The predicate IntegerToFloat corresponds to the LIAS function cvt_{I->F}.
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PREDICATE TruncateToInteger :

Float % A floating-point number.

* Integer. % The integer resulting from the conversion of this floating-point

% number using the function x -> sign(x).[|x|], where sign gives

% the sign of its argument, [] is the floor function, and . is

% multiplication.

DELAY TruncateToInteger(x,_) UNTIL GROUND(x).

% The predicate TruncateToInteger corresponds to an LIAS function cvt_{F->I}.

PREDICATE RoundToInteger :

Float % A floating-point number.

* Integer. % The integer resulting from the conversion of this floating-point

% number using the function x -> sign(x).[|x| + 1/2], where sign

% gives the sign of its argument, [] is the floor function, and .

% is multiplication.

DELAY RoundToInteger(x,_) UNTIL GROUND(x).

% The predicate Nearest corresponds to an LIAS function cvt_{F->I}.

PREDICATE Floor :

Float % A floating-point number.

* Integer. % The integer resulting from the conversion of this floating-point

% number using the floor function.

DELAY Floor(x,_) UNTIL GROUND(x).

% The predicate Floor corresponds to an LIAS function cvt_{F->I}.

PREDICATE Ceiling :

Float % A floating-point number.

* Integer. % The integer resulting from the conversion of this floating-point

% number using the ceiling function.

DELAY Ceiling(x,_) UNTIL GROUND(x).

% The predicate Ceiling corresponds to an LIAS function cvt_{F->I}.
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PREDICATE Exponent :

Float % A (non-zero) floating-point number s0.f1...fp * r^e.

* Integer. % The exponent e of this number.

DELAY Exponent(x,_) UNTIL GROUND(x).

% The predicate Exponent corresponds to the LIAS function exponent.

PREDICATE Radix :

Integer. % The radix 2 used in the representation of floating-point

% numbers.

% The predicate Radix gives the LIAS parameter r.

PREDICATE Precision :

Integer. % The maximum number 24 of radix digits allowed in the

% representation of floating-point numbers.

% The predicate Precision gives the LIAS parameter p.

PREDICATE MaxExponent :

Integer. % The maximum exponent 128 allowed in the representation of

% floating-point numbers.

% The predicate MaxExponent gives the LIAS parameter emax.

PREDICATE MinExponent :

Integer. % The minimum exponent -125 allowed in the representation of

% floating-point numbers.

% The predicate MinExponent gives the LIAS parameter emin.

PREDICATE MaxFloat :

Float. % The largest floating-point number 3.402823466E+38 (approx.).

% The predicate MaxFloat gives the LIAS constant fmax.
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PREDICATE MinNormFloat :

Float. % The normalised floating-point number 1.175494351E-38 (approx.)

% with the smallest magnitude.

% The predicate MinNormFloat gives the LIAS constant fmin_{N}.

PREDICATE MinFloat :

Float. % The denormalised floating-point number 1.401298464E-45 (approx.)

% with the smallest magnitude.

% The predicate MinNormFloat gives the LIAS constant fmin_{D}.

PREDICATE Epsilon :

Float. % Maximum relative spacing 1.192092896E-7 (approx.) in F.

% The predicate Epsilon gives the LIAS constant epsilon.

PREDICATE > : zPz :

Float % A floating-point number greater than the number in the second

% argument.

* Float. % A floating-point number.

DELAY x > y UNTIL GROUND(x) & GROUND(y).

% The predicate > corresponds to the LIAS predicate gtr.

PREDICATE < : zPz :

Float % A floating-point number less than the number in the second

% argument.

* Float. % A floating-point number.

DELAY x < y UNTIL GROUND(x) & GROUND(y).

% The predicate < corresponds to the LIAS predicate lss.
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PREDICATE >= : zPz :

Float % A floating-point number greater than or equal to the number in

% the second argument.

* Float. % A floating-point number.

DELAY x >= y UNTIL GROUND(x) & GROUND(y).

% The predicate >= corresponds to the LIAS predicate geq.

PREDICATE =< : zPz :

Float % A floating-point number less than or equal to the number in the

% second argument.

* Float. % A floating-point number.

DELAY x =< y UNTIL GROUND(x) & GROUND(y).

% The predicate =< corresponds to the LIAS predicate leq.
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13.4 Numbers

EXPORT Numbers.

% Module providing various conversion predicates for integer, rational, and

% floating-point numbers.

IMPORT Rationals, Floats, Strings.

PREDICATE RationalToFloat :

Rational % A rational.

* Float. % The floating-point number nearest the rational. In the case of

% a value exactly half-way between two neighbouring values in F,

% the one selected will be the one with the least significant bit

% zero. If underflow or overflow occurs, the computation will halt

% with an error message.

DELAY RationalToFloat(x,_) UNTIL GROUND(x).

PREDICATE FloatToRational :

Float % A floating-point number.

* Rational. % The rational resulting from the exact conversion of this

% floating-point number.

DELAY FloatToRational(x,_) UNTIL GROUND(x).

PREDICATE IntegerString :

Integer % An integer.

* String. % The string consisting of the characters in the integer.

DELAY IntegerString(x,y) UNTIL GROUND(x) \/ GROUND(y).

PREDICATE RationalString :

Rational % A rational.

* String. % The string consisting of the characters in the rational.

DELAY RationalString(x,y) UNTIL GROUND(x) \/ GROUND(y).
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PREDICATE FloatString :

Float % A floating-point number.

* String. % The string consisting of the characters in the floating-point

% number.

DELAY FloatString(x,y) UNTIL GROUND(x) \/ GROUND(y).
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13.5 Lists

EXPORT Lists.

% Module providing a collection of standard list processing predicates.

IMPORT Integers.

CONSTRUCTOR List/1.

%

% List constructor.

CONSTANT Nil : List(a).

%

% Empty list.

FUNCTION Cons : a * List(a) -> List(a).

%

% Cons function.

PREDICATE Member :

a % An element.

* List(a). % A list containing this element.

DELAY Member(_,y) UNTIL NONVAR(y).

PREDICATE MemberCheck :

a % An element.

* List(a). % A list containing this element.

%

% MemberCheck is a version of Member which efficiently checks

% whether a given element is a member of a given list. It

% prunes the search space so that MemberCheck succeeds at

% most once.

%
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% If s is the first argument of a call to MemberCheck and any

% answers to the call s = t, where t ranges over all elements

% of the list, are variants of one another, then no

% non-redundant answers to MemberCheck will be pruned.

% (In particular, if the call to MemberCheck is ground, this

% condition is automatically satisfied.)

DELAY MemberCheck(_, []) UNTIL TRUE;

MemberCheck(x, [y|_]) UNTIL NONVAR(x) & NONVAR(y).

PREDICATE Append :

List(a) % A list.

* List(a) % A list.

* List(a). % The list obtained by appending the lists in the first

% and second arguments.

DELAY Append(x,_,z) UNTIL NONVAR(x) \/ NONVAR(z).

PREDICATE Permutation :

List(a) % A list.

* List(a). % A list which is a permutation of the list in the first

% argument.

DELAY Permutation(x,y) UNTIL NONVAR(x) \/ NONVAR(y).

PREDICATE Delete :

a % An element.

* List(a) % A list.

* List(a). % A list which differs from the list in the second argument

% only in that exactly one occurrence of the element in the

% first argument is missing.

DELAY Delete(_,y,z) UNTIL NONVAR(y) \/ NONVAR(z).

PREDICATE DeleteFirst :

a % An element.

* List(a) % A list.

* List(a). % A list which differs from the list in the second argument

% only in that the first occurrence of the element in the

% first argument is missing.

DELAY DeleteFirst(x,y,z) UNTIL NONVAR(x) & (NONVAR(y) \/ NONVAR(z)).
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PREDICATE Reverse :

List(a) % A list.

* List(a). % The list consisting of the elements of the list in the

% first argument in reverse order.

DELAY Reverse(x,y) UNTIL NONVAR(x) \/ NONVAR(y).

PREDICATE Prefix :

List(a) % A list.

* Integer % A non-negative integer less than or equal to the length

% of the list in the first argument.

* List(a). % The prefix of the list in the first argument having length

% equal to the integer in the second argument.

DELAY Prefix(x,y,z) UNTIL (NONVAR(x) & NONVAR(y))

\/ (NONVAR(x) & NONVAR(z)).

PREDICATE Suffix :

List(a) % A list.

* Integer % A non-negative integer less than or equal to the length of

% the list in the first argument.

* List(a). % The suffix of the list in the first argument having length

% equal to the integer in the second argument.

DELAY Suffix(x,y,z) UNTIL (NONVAR(x) & NONVAR(y))

\/ (NONVAR(x) & NONVAR(z)).

PREDICATE Length :

List(a) % A list.

* Integer. % The length of the list in the first argument.

DELAY Length(x,y) UNTIL NONVAR(x) \/ NONVAR(y).

PREDICATE Sorted :

List(Integer). % A list of integers in non-decreasing order.

DELAY Sorted([]) UNTIL TRUE;

Sorted([_]) UNTIL TRUE;

Sorted([x,y|_]) UNTIL NONVAR(x) & NONVAR(y).
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PREDICATE Sort :

List(Integer) % A list of integers.

* List(Integer). % The list consisting of the elements of the list in the

% first argument in non-decreasing order.

DELAY Sort(x,_) UNTIL NONVAR(x).

PREDICATE Merge :

List(Integer) % A list of integers.

* List(Integer) % A list of integers.

* List(Integer). % The list which is the result of merging the lists in the

% first and second arguments.

DELAY Merge(x,y,z) UNTIL (NONVAR(x) & NONVAR(y)) \/ NONVAR(z).
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13.6 Sets

EXPORT Sets.

% Module providing finite sets and a collection of standard set processing

% functions and predicates.

%

% Also provided by this module are intensional set terms which have the form

%

% {T : W}

%

% where T is a term with free variables y1,...,yn, say, and W is a formula

% (not involving commits) which has y1,...,yn amongst its free variables. The

% variables y1,...,yn must be local to {T : W}. The free variables of {T : W}

% are the free variables of W other than y1,...,yn. (Note that T may itself be

% an intensional set term and that it is possible for n to be 0.)

%

% Intuitively, {T : W} means "the set of all instances of T corresponding to

% the instances of W which are true".

IMPORT Integers.

CONSTRUCTOR Set/1.

%

% Set constructor.

CONSTANT Null : Set(a).

%

% Empty set.

FUNCTION Inc : a * Set(a) -> Set(a).

%

% The function Inc (short for Include) used to form sets. The intended meaning

% of Inc is the mapping Inc’ such that Inc’(d,S) = {d} union S, where d is an

% element from the domain of type a and S is a set of elements of type a.

FUNCTION * : yFx(120) : Set(a) * Set(a) -> Set(a).

%

% Set-theoretic intersection.
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FUNCTION + : yFx(110) : Set(a) * Set(a) -> Set(a).

%

% Set-theoretic union.

FUNCTION \ : yFx(100) : Set(a) * Set(a) -> Set(a).

%

% Set-theoretic difference.

PREDICATE In : zPz :

a % An element.

* Set(a). % A set containing this element.

DELAY _ In y UNTIL GROUND(y).

PREDICATE Subset : zPz :

Set(a) % A subset of the set in the second argument.

* Set(a). % A set.

DELAY _ Subset y UNTIL GROUND(y).

PREDICATE StrictSubset : zPz :

Set(a) % A strict subset of the set in the second argument.

* Set(a). % A set.

DELAY _ StrictSubset y UNTIL GROUND(y).

PREDICATE Size :

Set(a) % A finite set.

* Integer. % The number of elements in the set.

DELAY Size(x,_) UNTIL GROUND(x).
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13.7 Strings

EXPORT Strings.

% Module providing strings and a collection of standard string processing

% predicates.

IMPORT Lists.

BASE String.

%

% Type of a string.

FUNCTION ++ : yFx(500) : String * String -> String.

%

% String concatenation.

PREDICATE StringInts :

String % A string.

* List(Integer). % The list of ASCII codes of the characters in this string

% in the order in which they appear there.

DELAY StringInts(x,y) UNTIL GROUND(x) \/ GROUND(y).

PREDICATE FirstSubstring :

String % A string.

* Integer % A non-negative integer n less than or equal to the length of

% the string in the first argument.

* String. % The substring consisting of the first n characters of the

% string in the first argument.

DELAY FirstSubstring(x,y,z) UNTIL GROUND(x) & (GROUND(y) \/ GROUND(z)).
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PREDICATE LastSubstring :

String % A string.

* Integer % A non-negative integer n less than or equal to the length of

% this string.

* String. % The substring consisting of the last n characters of the

% string in the first argument.

DELAY LastSubstring(x,y,z) UNTIL GROUND(x) & (GROUND(y) \/ GROUND(z)).

PREDICATE Width :

String % A string.

* Integer. % The number of characters in this string.

DELAY Width(x,_) UNTIL GROUND(x).

PREDICATE > : zPz :

String % A string lexically greater than the string in the second

% argument.

* String. % A string.

DELAY x > y UNTIL GROUND(x) & GROUND(y).

PREDICATE < : zPz :

String % A string lexically less than the string in the second

% argument.

* String. % A string.

DELAY x < y UNTIL GROUND(x) & GROUND(y).

PREDICATE >= : zPz :

String % A string lexically greater than or equal to the string in

% the second argument.

* String. % A string.

DELAY x >= y UNTIL GROUND(x) & GROUND(y).
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PREDICATE =< : zPz :

String % A string lexically less than or equal to the string in the

% second argument.

* String. % A string.

DELAY x =< y UNTIL GROUND(x) & GROUND(y).
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13.8 Tables

EXPORT Tables.

% Module providing tables, which are data structures consisting of an ordered

% collection of nodes, each of which has two components, a key and a value.

% The key must be a string, but the value can have any type. The ordering is

% the lexical ordering of the keys.

IMPORT Strings.

CONSTRUCTOR Table/1.

PREDICATE EmptyTable :

Table(a). % An empty table.

PREDICATE NodeInTable :

Table(a) % A table.

* String % The key of a node in the table.

* a. % The value in this node.

DELAY NodeInTable(x,_,_) UNTIL NONVAR(x).

PREDICATE InsertNode :

Table(a) % A table.

* String % A key, not in this table.

* a % A value.

* Table(a). % A table which differs from the table in the first

% argument only in that it also contains a node with this

% key and value.

DELAY InsertNode(x,y,_,_) UNTIL NONVAR(x) & GROUND(y).

PREDICATE DeleteNode :

Table(a) % A table.

* String % A key in this table.
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* a % A value.

* Table(a). % A table which differs from the table in the first

% argument only in that it does not contain a node with

% this key and value.

DELAY DeleteNode(x,_,_,_) UNTIL NONVAR(x).

PREDICATE UpdateTable :

Table(a) % A table.

* String % The key of a node in the table.

* a % A new value to be associated with the key.

* Table(a) % The table with the node updated.

* a. % The old value that was associated with the key.

DELAY UpdateTable(x,y,_,_,_) UNTIL NONVAR(x) & GROUND(y).

PREDICATE AmendTable :

Table(a) % A table.

* String % A key.

* a % A (new) value to be associated with the key.

* a % A value (a default "old value").

* Table(a) % The table updated so that the new value is associated

% with the key. (If the key is already present in the table,

% the associated value will be updated; otherwise the node

% with this key and value will be inserted into the table.)

* a. % The old value associated with the key if it was already

% present in the table, otherwise the value in the fourth

% argument.

DELAY AmendTable(x,y,_,_,_,_) UNTIL NONVAR(x) & GROUND(y).

PREDICATE JoinTables :

Table(a) % A table.

* Table(a) % A table.

* Table(a). % The table formed from the first argument by adding to

% it all the nodes in the second argument whose keys are

% not already present in the first argument.

DELAY JoinTables(x,y,_) UNTIL NONVAR(x) & NONVAR(y).
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PREDICATE ListTable :

Table(a) % A table.

* List(String) % The lexically ordered list of keys of nodes in the table.

* List(a). % The corresponding list of values.

DELAY ListTable(x,y,z) UNTIL NONVAR(x) \/ (NONVAR(y) & NONVAR(z)).

PREDICATE FirstNode :

Table(a) % A table.

* String % The key of the node which is lexically first amongst

% all keys in the table.

* a. % The value of this node.

DELAY FirstNode(x,_,_) UNTIL NONVAR(x).

PREDICATE LastNode :

Table(a) % A table.

* String % The key of the node which is lexically last amongst

% all keys in the table.

* a. % The value of this node.

DELAY LastNode(x,_,_) UNTIL NONVAR(x).

PREDICATE NextNode :

Table(a) % A table.

* String % The key of a node in the table.

* String % The key of the node which is the lexical successor of

% the key in the second argument.

* a. % The value of this node.

DELAY NextNode(x,y,_,_) UNTIL NONVAR(x) & NONVAR(y).

PREDICATE PreviousNode :

Table(a) % A table.

* String % The key of a node in the table.

* String % The key of the node which is the lexical predecessor

% of the key in the second argument.

* a. % The value of this node.

DELAY PreviousNode(x,y,_,_) UNTIL NONVAR(x) & NONVAR(y).
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13.9 Units

EXPORT Units.

% Module providing units and some predicates which process them.

IMPORT Strings.

BASE Unit.

%

% Type of a unit.

PREDICATE StringToUnit :

String % String representation of a unit.

* Unit. % This unit.

DELAY StringToUnit(x,_) UNTIL GROUND(x).

PREDICATE UnitToString :

Unit % A unit.

* String. % String representation of this unit.

DELAY UnitToString(x,_) UNTIL GROUND(x).

PREDICATE UnitParts :

Unit % A unit.

* String % String representation of the top-level identifier of this

% unit.

* List(Unit). % List of top-level subunits of this unit. (The list is empty

% if the unit is just an identifier.)
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PREDICATE UnitArgument :

Unit % A unit.

* Integer % A positive integer n.

* Unit. % The nth top-level subunit of this unit.

DELAY UnitArgument(x,_,_) UNTIL NONVAR(x).
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13.10 Flocks

EXPORT Flocks.

% Module providing flocks, which are ordered collections of units, and some

% predicates which process them.

IMPORT Units.

BASE Flock.

%

% Type of a flock.

PREDICATE EmptyFlock :

Flock. % An empty flock.

PREDICATE Extent :

Flock % A flock.

* Integer. % The number of units in this flock.

DELAY Extent(x,_) UNTIL GROUND(x).

PREDICATE UnitInFlock :

Flock % A flock.

* Unit % A unit in this flock.

* Integer. % Position of this unit in this flock.

DELAY UnitInFlock(x,_,_) UNTIL GROUND(x).

PREDICATE UnitWithIdentifier :

Flock % A flock.

* String % String representation of an identifier.

* Unit % A unit in this flock whose top-level identifier is the

% identifier in the second argument.

* Integer. % Position of this unit in this flock.

DELAY UnitWithIdentifier(x,_,_,_) UNTIL GROUND(x).
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PREDICATE InsertUnit :

Flock % A flock.

* Unit % A unit.

* Integer % A positive integer n.

* Flock. % A flock which differs from the flock in the first argument

% only in that it also contains this unit in the nth position.

DELAY InsertUnit(x,y,z,_) UNTIL GROUND(x) & GROUND(y) & GROUND(z).

PREDICATE DeleteUnit :

Flock % A flock.

* Unit % A unit in this flock.

* Integer % The position of this unit in this flock.

* Flock. % A flock which differs from the flock in the first argument

% only in that it does not contain this unit in this position.

DELAY DeleteUnit(x,_,_,_) UNTIL GROUND(x).
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13.11 Syntax

EXPORT Syntax.

% Module containing predicates for manipulating (the ground representations of)

% object level expressions.

IMPORT Strings.

BASE Name, % Type of a term representing the name of a symbol.

Type, % Type of a term representing a type.

Term, % Type of a term representing a term.

Formula, % Type of a term representing a formula.

TypeSubst, % Type of a term representing a type substitution.

TermSubst, % Type of a term representing a term substitution.

FunctionInd, % Type of a term representing a function indicator.

PredicateInd, % Type of a term representing a predicate indicator.

VarTyping. % Type of a term representing a variable typing.

CONSTANT NoPredInd : PredicateInd.

%

% Constant stating that a predicate has no indicator.

CONSTANT ZPZ, ZP, PZ : PredicateInd.

%

% Constants representing the predicate indicators zPz, zP, and Pz (resp.).

CONSTANT NoFunctInd : FunctionInd.

%

% Constant stating that a function has no indicator.

FUNCTION XFX, XFY, YFX, XF, FX, YF, FY : Integer -> FunctionInd.

%

% Functions representing the function indicators xFx, xFy, yFx, xF, Fx, yF,

% and Fy (resp.).
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PREDICATE And :

Formula % Representation of a formula W.

* Formula % Representation of a formula V.

* Formula. % Representation of the formula W & V.

PREDICATE AndWithEmpty :

Formula % Representation of possibly empty formula W.

* Formula % Representation of possibly empty formula V.

* Formula. % Representation of W & V, if W and V are non-empty; W, if V

% is the empty formula; and V, if W is the empty formula.

DELAY AndWithEmpty(x,y,_) UNTIL GROUND(x) & GROUND(y).

PREDICATE Or :

Formula % Representation of a formula W.

* Formula % Representation of a formula V.

* Formula. % Representation of the formula W \/ V.

PREDICATE Not :

Formula % Representation of a formula W.

* Formula. % Representation of the formula ~ W.

PREDICATE Implies :

Formula % Representation of a formula W.

* Formula % Representation of a formula V.

* Formula. % Representation of the formula W -> V.

PREDICATE IsImpliedBy :

Formula % Representation of a formula W.

* Formula % Representation of a formula V.

* Formula. % Representation of the formula W <- V.

PREDICATE Equivalent :

Formula % Representation of a formula W.

* Formula % Representation of a formula V.

* Formula. % Representation of the formula W <-> V.
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PREDICATE Some :

List(Term) % List of representations of variables.

* Formula % Representation of a formula.

* Formula. % Representation of the formula obtained by taking the

% existential quantification over the set of variables in the

% first argument of the formula in the second argument.

PREDICATE All :

List(Term) % List of representations of variables.

* Formula % Representation of a formula.

* Formula. % Representation of the formula obtained by taking the

% universal quantification over the set of variables in the

% first argument of the formula in the second argument.

PREDICATE IfThen :

Formula % Representation of a formula, Condition.

* Formula % Representation of a formula, Formula.

* Formula. % Representation of the IF-THEN construct which has the form

% IF Condition THEN Formula.

PREDICATE IfSomeThen :

List(Term) % List of representations of variables, Listvar.

* Formula % Representation of a formula, Condition.

* Formula % Representation of a formula, Formula.

* Formula. % Representation of the IF-THEN construct which has the form

% IF SOME Listvar Condition THEN Formula.

PREDICATE IfThenElse :

Formula % Representation of a formula, Condition.

* Formula % Representation of a formula, Formula1.

* Formula % Representation of a formula, Formula2.

* Formula. % Representation of the IF-THEN-ELSE construct which has the

% form IF Condition THEN Formula1 ELSE Formula2.
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PREDICATE IfSomeThenElse :

List(Term) % List of representations of variables, Listvar.

* Formula % Representation of a formula, Condition.

* Formula % Representation of a formula, Formula1.

* Formula % Representation of a formula, Formula2.

* Formula. % Representation of the IF-THEN-ELSE construct which has the

% form IF SOME Listvar Condition THEN Formula1 ELSE Formula2.

PREDICATE Commit :

Integer % Commit label.

* Formula % Representation of a formula.

* Formula. % Representation of the formula obtained by enclosing the

% formula in the second argument using commits with this

% label.

PREDICATE IntensionalSet :

Term % Representation of a term T.

* Formula % Representation of a formula W.

* Term. % Representation of the intensional set term {T : W}.

PREDICATE Parameter :

Type. % Representation of a parameter.

DELAY Parameter(x) UNTIL GROUND(x).

PREDICATE ParameterName :

Type % Representation of a parameter.

* String % The root of the name of the parameter.

* Integer. % The index of the parameter.

PREDICATE TypeMaxParIndex :

List(Type) % List of representations of types.

* Integer. % One more than the maximum index of parameters appearing in

% these types. (If there are no such parameters, this argument

% is 0.)

DELAY TypeMaxParIndex(x,_) UNTIL GROUND(x).
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PREDICATE Variable :

Term. % Representation of a variable.

DELAY Variable(x) UNTIL GROUND(x).

PREDICATE VariableName :

Term % Representation of a variable.

* String % The root of the name of the variable.

* Integer. % The index of the variable.

PREDICATE FormulaMaxVarIndex :

List(Formula) % List of representations of formulas.

* Integer. % One more than the maximum index of variables appearing in

% these formulas. (If there are no such variables, this

% argument is 0.)

DELAY FormulaMaxVarIndex(x,_) UNTIL GROUND(x).

PREDICATE TermMaxVarIndex :

List(Term) % List of representations of terms.

* Integer. % One more than the maximum index of variables appearing in

% these terms. (If there are no such variables, this argument

% is 0.)

DELAY TermMaxVarIndex(x,_) UNTIL GROUND(x).

PREDICATE FormulaVariables :

Formula % Representation of a formula.

* List(Term). % List (in some order) of the representations of the free

% variables occurring in this formula.

DELAY FormulaVariables(x,_) UNTIL GROUND(x).

PREDICATE TermVariables :

Term % Representation of a term.

* List(Term). % List (in some order) of the representations of the (free)

% variables occurring in this term.

DELAY TermVariables(x,_) UNTIL GROUND(x).
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PREDICATE TypeParameters :

Type % Representation of a type.

* List(Type). % List (in some order) of the representations of the

% parameters occurring in this type.

DELAY TypeParameters(x,_) UNTIL GROUND(x).

PREDICATE EmptyFormula :

Formula. % Representation of the empty formula.

PREDICATE EmptyTypeSubst :

TypeSubst. % Representation of the empty type substitution.

PREDICATE EmptyTermSubst :

TermSubst. % Representation of the empty term substitution.

PREDICATE EmptyVarTyping :

VarTyping. % Representation of the empty variable typing.

PREDICATE NonParType :

Type. % Representation of a non-parameter type.

DELAY NonParType(x) UNTIL GROUND(x).

PREDICATE NonVarTerm :

Term. % Representation of a non-variable term.

DELAY NonVarTerm(x) UNTIL GROUND(x).

PREDICATE Atom :

Formula. % Representation of an atom.

DELAY Atom(x) UNTIL GROUND(x).
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PREDICATE ConjunctionOfAtoms :

Formula. % Representation of a conjunction of atoms.

DELAY ConjunctionOfAtoms(x) UNTIL GROUND(x).

PREDICATE Literal :

Formula. % Representation of a literal.

DELAY Literal(x) UNTIL GROUND(x).

PREDICATE ConjunctionOfLiterals :

Formula. % Representation of a conjunction of literals.

DELAY ConjunctionOfLiterals(x) UNTIL GROUND(x).

PREDICATE CommitFreeFormula :

Formula. % Representation of a commit-free formula.

DELAY CommitFreeFormula(x) UNTIL GROUND(x).

PREDICATE GroundType :

Type. % Representation of a ground type.

DELAY GroundType(x) UNTIL GROUND(x).

PREDICATE GroundTerm :

Term. % Representation of a ground term.

DELAY GroundTerm(x) UNTIL GROUND(x).

PREDICATE GroundAtom :

Formula. % Representation of a ground atom.

DELAY GroundAtom(x) UNTIL GROUND(x).
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PREDICATE ClosedFormula :

Formula. % Representation of a closed formula.

DELAY ClosedFormula(x) UNTIL GROUND(x).

PREDICATE Body :

Formula. % Representation of a standard body.

DELAY Body(x) UNTIL GROUND(x).

PREDICATE NormalBody :

Formula. % Representation of a normal body.

DELAY NormalBody(x) UNTIL GROUND(x).

PREDICATE DefiniteBody :

Formula. % Representation of a definite body.

DELAY DefiniteBody(x) UNTIL GROUND(x).

PREDICATE Goal :

Formula. % Representation of a standard goal.

DELAY Goal(x) UNTIL GROUND(x).

PREDICATE NormalGoal :

Formula. % Representation of a normal goal.

DELAY NormalGoal(x) UNTIL GROUND(x).

PREDICATE DefiniteGoal :

Formula. % Representation of a definite goal.

DELAY DefiniteGoal(x) UNTIL GROUND(x).
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PREDICATE Resultant :

Formula. % Representation of a standard resultant.

DELAY Resultant(x) UNTIL GROUND(x).

PREDICATE NormalResultant :

Formula. % Representation of a normal resultant.

DELAY NormalResultant(x) UNTIL GROUND(x).

PREDICATE DefiniteResultant :

Formula. % Representation of a definite resultant.

DELAY DefiniteResultant(x) UNTIL GROUND(x).

PREDICATE Statement :

Formula. % Representation of a standard statement.

DELAY Statement(x) UNTIL GROUND(x).

PREDICATE NormalStatement :

Formula. % Representation of a normal statement.

DELAY NormalStatement(x) UNTIL GROUND(x).

PREDICATE DefiniteStatement :

Formula. % Representation of a definite statement.

DELAY DefiniteStatement(x) UNTIL GROUND(x).

PREDICATE BaseType :

Type % Representation of a non-opaque base.

* Name. % Representation of the name of this base.
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PREDICATE ConstructorType :

Type % Representation of a non-opaque type with a constructor at

% the top level.

* Name % Representation of the name of this constructor.

* List(Type). % List of representations of the top-level subtypes of this

% type.

PREDICATE ConstantTerm :

Term % Representation of a non-opaque constant.

* Name. % Representation of the name of this constant.

PREDICATE FunctionTerm :

Term % Representation of a non-opaque term with a function at the

% top level.

* Name % Representation of the name of this function.

* List(Term). % List of representations of the top-level subterms of this

% term.

PREDICATE PropositionAtom :

Formula % Representation of a non-opaque proposition.

* Name. % Representation of the name of this proposition.

PREDICATE PredicateAtom :

Formula % Representation of a non-opaque atom with a predicate at the

% top level.

* Name % Representation of the name of this predicate.

* List(Term). % List of representations of the top-level terms of this atom.

PREDICATE OpaqueType :

Type. % Representation of an opaque type.

DELAY OpaqueType(x) UNTIL GROUND(x).
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PREDICATE OpaqueTerm :

Term. % Representation of an opaque term.

DELAY OpaqueTerm(x) UNTIL GROUND(x).

PREDICATE OpaqueAtom :

Formula. % Representation of an opaque atom.

DELAY OpaqueAtom(x) UNTIL GROUND(x).

PREDICATE ApplySubstToType :

Type % Representation of a type.

* TypeSubst % Representation of a type substitution.

* Type. % Representation of the type obtained by applying this

% substitution to this type.

DELAY ApplySubstToType(x,y,_) UNTIL GROUND(x) & GROUND(y).

PREDICATE ApplySubstToTerm :

Term % Representation of a term.

* TermSubst % Representation of a term substitution.

* Term. % Representation of the term obtained by applying this

% substitution to this term.

DELAY ApplySubstToTerm(x,y,_) UNTIL GROUND(x) & GROUND(y).

PREDICATE ApplySubstToFormula :

Formula % Representation of a formula.

* TermSubst % Representation of a term substitution.

* Formula. % Representation of the formula obtained by applying this

% substitution to this formula.

DELAY ApplySubstToFormula(x,y,_) UNTIL GROUND(x) & GROUND(y).
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PREDICATE ComposeTypeSubsts :

TypeSubst % Representation of a type substitution.

* TypeSubst % Representation of a type substitution.

* TypeSubst. % Representation of the substitution obtained by composing

% these two substitutions (in the order that they appear as

% arguments).

DELAY ComposeTypeSubsts(x,y,_) UNTIL GROUND(x) & GROUND(y).

PREDICATE ComposeTermSubsts :

TermSubst % Representation of a term substitution.

* TermSubst % Representation of a term substitution.

* TermSubst. % Representation of the substitution obtained by composing

% these two substitutions (in the order that they appear as

% arguments).

DELAY ComposeTermSubsts(x,y,_) UNTIL GROUND(x) & GROUND(y).

PREDICATE CombineVarTypings :

VarTyping % Representation of a variable typing.

* VarTyping % Representation of a variable typing.

* VarTyping. % Representation of the variable typing obtained by combining

% these two variable typings (in the order that they appear as

% arguments).

DELAY CombineVarTypings(x,y,_) UNTIL GROUND(x) & GROUND(y).

PREDICATE RestrictSubstToType :

Type % Representation of a type.

* TypeSubst % Representation of a type substitution.

* TypeSubst. % Representation of the substitution obtained by restricting

% this type substitution to the parameters in this type.

DELAY RestrictSubstToType(x,y,_) UNTIL GROUND(x) & GROUND(y).

PREDICATE RestrictSubstToTerm :

Term % Representation of a term.

* TermSubst % Representation of a term substitution.
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* TermSubst. % Representation of the substitution obtained by restricting

% this term substitution to the variables in this term.

DELAY RestrictSubstToTerm(x,y,_) UNTIL GROUND(x) & GROUND(y).

PREDICATE RestrictSubstToFormula :

Formula % Representation of a formula.

* TermSubst % Representation of a term substitution.

* TermSubst. % Representation of the substitution obtained by restricting

% this term substitution to the free variables in this term.

DELAY RestrictSubstToFormula(x,y,_) UNTIL GROUND(x) & GROUND(y).

PREDICATE BindingToTypeSubst :

Type % Representation of a parameter.

* Type % Representation of a type.

* TypeSubst. % Representation of the type substitution containing just the

% binding in which this parameter is bound to this type.

DELAY BindingToTypeSubst(x,y,_) UNTIL GROUND(x) & GROUND(y).

PREDICATE BindingToTermSubst :

Term % Representation of a variable.

* Term % Representation of a term.

* TermSubst. % Representation of the term substitution containing just

% the binding in which this variable is bound to this term.

DELAY BindingToTermSubst(x,y,_) UNTIL GROUND(x) & GROUND(y).

PREDICATE BindingToVarTyping :

Term % Representation of a variable.

* Type % Representation of a type.

* VarTyping. % Representation of the variable typing containing just the

% binding in which this variable is bound to this type.

DELAY BindingToVarTyping(x,y,_) UNTIL GROUND(x) & GROUND(y).
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PREDICATE BindingInTypeSubst :

TypeSubst % Representation of a type substitution.

* Type % Representation of a parameter in a binding in this

% substitution.

* Type. % Representation of the type to which this parameter is bound

% in this substitution.

DELAY BindingInTypeSubst(x,_,_) UNTIL GROUND(x).

PREDICATE BindingInTermSubst :

TermSubst % Representation of a term substitution.

* Term % Representation of a variable in a binding in this

% substitution.

* Term. % Representation of the term to which this variable is bound

% in this substitution.

DELAY BindingInTermSubst(x,_,_) UNTIL GROUND(x).

PREDICATE BindingInVarTyping :

VarTyping % Representation of a variable typing.

* Term % Representation of a variable in a binding in this variable

% typing.

* Type. % Representation of the type to which this variable is bound

% in this variable typing.

DELAY BindingInVarTyping(x,_,_) UNTIL GROUND(x).

PREDICATE DelBindingInTypeSubst :

TypeSubst % Representation of a type substitution.

* Type % Representation of a parameter.

* Type % Representation of a type.

* TypeSubst. % Representation of the type substitution obtained from the

% first argument by deleting the binding of this parameter

% to this type.

DELAY DelBindingInTypeSubst(x,_,_,_) UNTIL GROUND(x).
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PREDICATE DelBindingInTermSubst :

TermSubst % Representation of a term substitution.

* Term % Representation of a variable.

* Term % Representation of a term.

* TermSubst. % Representation of the term substitution obtained from the

% first argument by deleting the binding of this variable

% to this term.

DELAY DelBindingInTermSubst(x,_,_,_) UNTIL GROUND(x).

PREDICATE DelBindingInVarTyping :

VarTyping % Representation of a variable typing.

* Term % Representation of a variable.

* Type % Representation of a type.

* VarTyping. % Representation of the variable typing obtained from the

% first argument by deleting the binding of this variable

% to this type.

DELAY DelBindingInVarTyping(x,_,_,_) UNTIL GROUND(x).

PREDICATE UnifyTypes :

Type % Representation of a type.

* Type % Representation of a type.

* TypeSubst % Representation of a type substitution.

* TypeSubst. % Representation of the type substitution obtained by

% composing the type substitution in the third argument with

% a specific, unique mgu for the types which are obtained by

% applying the type substitution in the third argument to

% the types in the first two arguments. (The mgu binds a

% parameter in the first argument to a parameter in the

% second argument, not the other way around.)

DELAY UnifyTypes(x,y,z,_) UNTIL GROUND(x) & GROUND(y) & GROUND(z).

PREDICATE UnifyTerms :

Term % Representation of a term.

* Term % Representation of a term.

* TermSubst % Representation of a term substitution.

* TermSubst. % Representation of the term substitution obtained by



214 CHAPTER 13. SYSTEM MODULES AND UTILITIES

% composing the term substitution in the third argument with

% a specific, unique mgu for the terms which are obtained by

% applying the term substitution in the third argument to

% the terms in the first two arguments. (The mgu binds a

% variable in the first argument to a variable in the second

% argument, not the other way around.)

DELAY UnifyTerms(x,y,z,_) UNTIL GROUND(x) & GROUND(y) & GROUND(z).

PREDICATE UnifyAtoms :

Formula % Representation of an atom.

* Formula % Representation of an atom.

* TermSubst % Representation of a term substitution.

* TermSubst. % Representation of the term substitution obtained by

% composing the term substitution in the third argument with

% a specific, unique mgu for the atoms which are obtained by

% applying the term substitution in the third argument to

% the atoms in the first two arguments. (The mgu binds a

% variable in the first argument to a variable in the second

% argument, not the other way around.)

DELAY UnifyAtoms(x,y,z,_) UNTIL GROUND(x) & GROUND(y) & GROUND(z).

PREDICATE RenameTypes :

List(Type) % List of representations of types.

* List(Type) % List of representations of types.

* List(Type). % List of representations of the types obtained by renaming

% the parameters of the types in the second argument by a

% specific, unique type substitution such that they become

% distinct from the parameters in the types in the first

% argument.

DELAY RenameTypes(x,y,_) UNTIL GROUND(x) & GROUND(y).

PREDICATE RenameTerms :

List(Term) % List of representations of terms.

* List(Term) % List of representations of terms.

* List(Term). % List of representations of the terms obtained by renaming

% the variables of the terms in the second argument by a

% specific, unique term substitution such that they become
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% distinct from the variables in the terms in the first

% argument.

DELAY RenameTerms(x,y,_) UNTIL GROUND(x) & GROUND(y).

PREDICATE RenameFormulas :

List(Formula) % List of representations of formulas.

* List(Formula) % List of representations of formulas.

* List(Formula). % List of representations of the formulas obtained by renaming

% the free variables of the formulas in the second argument by

% a specific, unique term substitution such that they become

% distinct from the free variables in the formulas in the

% first argument.

DELAY RenameFormulas(x,y,_) UNTIL GROUND(x) & GROUND(y).

PREDICATE VariantTypes :

List(Type) % List of representation of types.

* List(Type). % List of representations of types which are variants of the

% types in the first argument.

DELAY VariantTypes(x,y) UNTIL GROUND(x) & GROUND(y).

PREDICATE VariantTerms :

List(Term) % List of representation of terms.

* List(Term). % List of representations of terms which are variants of the

% terms in the first argument.

DELAY VariantTerms(x,y) UNTIL GROUND(x) & GROUND(y).

PREDICATE VariantFormulas :

List(Formula) % List of representations of formulas.

* List(Formula). % List of representations of formulas which are variants of

% the formulas in the first argument.

DELAY VariantFormulas(x,y) UNTIL GROUND(x) & GROUND(y).
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PREDICATE StandardiseFormula :

Formula % Representation of a formula.

* Integer % A non-negative integer.

* Integer % A non-negative integer.

* Formula. % Representation of the formula obtained by systematically

% replacing the variables of the formula in the first argument

% by variables with indexes greater than or equal to the

% second argument and strictly less than the third argument.

DELAY StandardiseFormula(x, y, _, _) UNTIL GROUND(x) & GROUND(y).

PREDICATE Derive :

Formula % Representation of the head of a normal resultant.

* Formula % Representation of the body to the left of the selected atom

% of this resultant.

* Formula % Representation of the selected atom in this resultant.

* Formula % Representation of the body to the right of the selected atom

% of this resultant.

* Formula % Representation of a normal statement whose head unifies

% with the selected atom in the resultant.

* TermSubst % Representation of a specific, unique mgu of the head of the

% selected atom and the head of this statement. (The mgu binds

% a variable in the head to a variable in the selected atom,

% not the other way around.)

* Formula. % Representation of the derived resultant obtained from this

% resultant and this statement using this mgu.

DELAY Derive(x,y,z,u,v,_,_) UNTIL GROUND(x) & GROUND(y) & GROUND(z) &

GROUND(u) & GROUND(v).

PREDICATE ResolveAll :

Formula % Representation of an atom.

* List(Formula) % List of representations of normal statements.

* Integer % A non-negative integer.

* Integer % A non-negative integer.

* Integer % A non-negative integer.

* Integer % A non-negative integer.

* TermSubst % Representation of a term substitution.

* List(TermSubst) % List of representations of the substitutions obtained by

% composing the substitution in the seventh argument with a

% specific, unique mgu of the atom in the first argument
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% with the substitution in the seventh argument applied and

% the head of a renamed statement in the second argument.

% The renaming is achieved by systematically replacing the

% variables of the statement by variables with indexes

% greater than or equal to the third argument and strictly

% less than the fourth argument, and commit labels of the

% statement by commit labels greater than or equal to the

% fifth argument and strictly less than the sixth argument.

% (Each mgu binds a variable in the head to a variable in the

% atom in the first argument with the substitution applied,

% not the other way around.)

* List(Formula). % List of representations of the corresponding conjunctions

% of literals obtained by resolving the negation of the atom

% in the first argument with the substitution in the seventh

% argument applied and each renamed statement from the second

% argument and then negating the resolvents so obtained.

DELAY ResolveAll(x,y,z,_,u,_,v,_,_) UNTIL GROUND(x) & GROUND(y) &

GROUND(z) & GROUND(u) & GROUND(v).
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13.12 Programs

EXPORT Programs.

% Module containing predicates provided by the ground representation of (object)

% Goedel programs.

IMPORT Syntax.

BASE Program, % Type of a term representing (the flat form of) a

% program.

ModulePart, % Type of constants representing the keywords

% EXPORT, LOCAL, CLOSED, and MODULE.

Condition. % Type of a term representing a condition in a DELAY

% declaration.

CONSTANT Export, Local, Closed, Module : ModulePart.

%

% Constants representing the keywords EXPORT, LOCAL, CLOSED, and MODULE (resp.).

PREDICATE TypeInProgram :

Program % Representation of a program.

* Type. % Representation of a type in the flat language of this

% program.

DELAY TypeInProgram(x,y) UNTIL GROUND(x) & GROUND(y).

PREDICATE TermInProgram :

Program % Representation of a program.

* VarTyping % Representation of a variable typing in the flat language of

% this program.

* Term % Representation of a term in the flat language of this

% program.

* Type % Representation of the type of this term with respect to this

% variable typing.

* VarTyping. % Representation of the variable typing obtained by combining



13.12. PROGRAMS 219

% the variable typing in the second argument with the types of

% all variables occurring in the term.

DELAY TermInProgram(x,y,z,_,_) UNTIL GROUND(x) & GROUND(y) & GROUND(z).

PREDICATE FormulaInProgram :

Program % Representation of a program.

* VarTyping % Representation of a variable typing in the flat language

% of this program.

* Formula % Representation of a formula (that is, standard body or

% standard resultant) in the flat language of this program.

* VarTyping. % Representation of the variable typing obtained by combining

% the variable typing in the second argument with the types of

% all free variables occurring in the formula.

DELAY FormulaInProgram(x,y,z,_) UNTIL GROUND(x) & GROUND(y) & GROUND(z).

PREDICATE TypeInModule :

Program % Representation of a program.

* String % Name of a module in this program.

* ModulePart % Representation of a part keyword of this module.

* Type. % Representation of a type in the flat language of this

% module, if the keyword is Local or Module, or the flat

% export language of this module, if the keyword is Export or

% Closed.

DELAY TypeInModule(x,y,z,u) UNTIL GROUND(x) & GROUND(y) & GROUND(z) &

GROUND(u).

PREDICATE TermInModule :

Program % Representation of a program.

* String % Name of a module in this program.

* ModulePart % Representation of a part keyword of this module.

* VarTyping % Representation of a variable typing in the flat language of

% this module, if the keyword is Local or Module, or the flat

% export language of this module, if the keyword is Export or

% Closed.

* Term % Representation of a term in the flat language of this

% module, if the keyword is Local or Module, or the flat

% export language of this module, if the keyword is Export or
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% Closed.

* Type % Representation of the type of this term with respect to this

% variable typing.

* VarTyping. % Representation of the variable typing obtained by combining

% the variable typing in the fifth argument with the types of

% all variables occurring in the term.

DELAY TermInModule(x,y,z,u,v,_,_) UNTIL GROUND(x) & GROUND(y) & GROUND(z) &

GROUND(u) & GROUND(v).

PREDICATE FormulaInModule :

Program % Representation of a program.

* String % Name of a module in this program.

* ModulePart % Representation of a part keyword of this module.

* VarTyping % Representation of a variable typing in the flat language of

% this module, if the keyword is Local or Module, or the flat

% export language of this module, if the keyword is Export or

% Closed.

* Formula % Representation of a formula (that is, standard body or

% standard resultant) in the flat language of this module, if

% the keyword is Local or Module, or the flat export language

% of this module, if the keyword is Export or Closed.

* VarTyping. % Representation of the variable typing obtained by combining

% the variable typing in the fourth argument with the types of

% all free variables occurring in the formula.

DELAY FormulaInModule(x,y,z,u,v,_) UNTIL GROUND(x) & GROUND(y) & GROUND(z)

& GROUND(u) & GROUND(v).

PREDICATE StringToProgramType :

Program % Representation of a program.

* String % Name of a module in this program.

* String % A string.

* List(Type). % List (in a definite order) of representations of types in

% the flat language of this module wrt this program whose

% string representation is the third argument.

DELAY StringToProgramType(x,y,z,_) UNTIL GROUND(x) & GROUND(y) & GROUND(z).

PREDICATE StringToProgramTerm :
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Program % Representation of a program.

* String % Name of a module in this program.

* String % A string.

* List(Term). % List (in a definite order) of representations of terms in

% the flat language of this module wrt this program whose

% string representation is the third argument.

DELAY StringToProgramTerm(x,y,z,_) UNTIL GROUND(x) & GROUND(y) & GROUND(z).

PREDICATE StringToProgramFormula :

Program % Representation of a program.

* String % Name of a module in this program.

* String % A string.

* List(Formula). % List (in a definite order) of representations of formulas

% (that is, standard bodies or standard resultants) in the

% flat language of this module wrt this program whose string

% representation is the third argument.

DELAY StringToProgramFormula(x,y,z,_) UNTIL GROUND(x) & GROUND(y) &

GROUND(z).

PREDICATE ProgramTypeToString :

Program % Representation of a program.

* String % Name of a module in this program.

* Type % Representation of a type.

* String. % The string representation of this type. (Subtypes of the

% type not in the flat language of the module do not appear.)

DELAY ProgramTypeToString(x,y,z,_) UNTIL GROUND(x) & GROUND(y) & GROUND(z).

PREDICATE ProgramTermToString :

Program % Representation of a program.

* String % Name of a module in this program.

* Term % Representation of a term.

* String. % The string representation of this term. (Subterms of the

% term not in the flat language of the module do not appear.)

DELAY ProgramTermToString(x,y,z,_) UNTIL GROUND(x) & GROUND(y) & GROUND(z).
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PREDICATE ProgramFormulaToString :

Program % Representation of a program.

* String % Name of a module in this program.

* Formula % Representation of a formula (that is, standard body or

% standard resultant).

* String. % The string representation of this formula. (Terms or atoms

% of the formula not in the flat language of the module do

% not appear.)

DELAY ProgramFormulaToString(x,y,z,_) UNTIL GROUND(x) & GROUND(y) & GROUND(z).

PREDICATE ProgramBaseName :

Program % Representation of a program.

* String % Name of a module in this program.

* String % Name of a base.

* Name. % Representation of the corresponding flat name of this base.

DELAY ProgramBaseName(x,y,z,u) UNTIL GROUND(x) &

((GROUND(y) & GROUND(z)) \/ GROUND(u)).

PREDICATE ProgramConstructorName :

Program % Representation of a program.

* String % Name of a module in this program.

* String % Name of a constructor.

* Integer % Arity of this constructor.

* Name. % Representation of the corresponding flat name of this

% constructor.

DELAY ProgramConstructorName(x,y,z,u,v) UNTIL GROUND(x) &

((GROUND(y) & GROUND(z) & GROUND(u)) \/ GROUND(v)).

PREDICATE ProgramConstantName :

Program % Representation of a program.

* String % Name of a module in this program.

* String % Name of a constant.

* Name. % Representation of the corresponding flat name of this

% constant.

DELAY ProgramConstantName(x,y,z,u) UNTIL GROUND(x) &

((GROUND(y) & GROUND(z)) \/ GROUND(u)).



13.12. PROGRAMS 223

PREDICATE ProgramFunctionName :

Program % Representation of a program.

* String % Name of a module in this program.

* String % Name of a function.

* Integer % Arity of this function.

* Name. % Representation of the corresponding flat name of this

% function.

DELAY ProgramFunctionName(x,y,z,u,v) UNTIL GROUND(x) &

((GROUND(y) & GROUND(z) & GROUND(u)) \/ GROUND(v)).

PREDICATE ProgramPropositionName :

Program % Representation of a program.

* String % Name of a module in this program.

* String % Name of a proposition.

* Name. % Representation of the corresponding flat name of this

% proposition.

DELAY ProgramPropositionName(x,y,z,u) UNTIL GROUND(x) &

((GROUND(y) & GROUND(z)) \/ GROUND(u)).

PREDICATE ProgramPredicateName :

Program % Representation of a program.

* String % Name of a module in this program.

* String % Name of a predicate.

* Integer % Arity of this predicate.

* Name. % Representation of the corresponding flat name of this

% predicate.

DELAY ProgramPredicateName(x,y,z,u,v) UNTIL GROUND(x) &

((GROUND(y) & GROUND(z) & GROUND(u)) \/ GROUND(v)).

PREDICATE MainModuleInProgram :

Program % Representation of a program.

* String. % Name of the main module in this program.

DELAY MainModuleInProgram(x,_) UNTIL GROUND(x).
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PREDICATE ModuleInProgram :

Program % Representation of a program.

* String. % Name of a module in this program.

DELAY ModuleInProgram(x,_) UNTIL GROUND(x).

PREDICATE OpenModule :

Program % Representation of a program.

* String. % Name of an open module in this program.

DELAY OpenModule(x,_) UNTIL GROUND(x).

PREDICATE DeclaredInOpenModule :

Program % Representation of a program.

* String % Name of an open module in this program.

* Formula. % Representation of an atom in the flat language of this

% program whose proposition or predicate is declared in this

% module.

DELAY DeclaredInOpenModule(x,_,z) UNTIL GROUND(x) & GROUND(z).

PREDICATE DeclaredInClosedModule :

Program % Representation of a program.

* String % Name of a closed module in this program.

* Formula. % Representation of an atom in the flat language of this

% program whose proposition or predicate is declared in the

% export part of this module.

DELAY DeclaredInClosedModule(x,_,z) UNTIL GROUND(x) & GROUND(z).

PREDICATE StatementInModule :

Program % Representation of a program.

* String % Name of an open module in this program.

* Formula. % Representation of a statement in this module.

DELAY StatementInModule(x,y,_) UNTIL GROUND(x) & GROUND(y).
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PREDICATE StatementMatchAtom :

Program % Representation of a program.

* String % Name of an open module in this program.

* Formula % Representation of an atom in the flat language of this

% program.

* Formula. % Representation of a statement in this module whose

% proposition or predicate in the head is the same as the

% proposition or predicate in this atom.

DELAY StatementMatchAtom(x,_,z,_) UNTIL GROUND(x) & GROUND(z).

PREDICATE DefinitionInProgram :

Program % Representation of a program.

* String % Name of an open module in this program.

* Name % Representation of the flat name of a proposition or

% predicate declared in this module.

* List(Formula). % List (in a definite order) of representations of statements

% in the definition of this proposition or predicate.

DELAY DefinitionInProgram(x,_,_,_) UNTIL GROUND(x).

PREDICATE ControlInProgram :

Program % Representation of a program.

* String % Name of an open module in this program.

* Name % Representation of the flat name of a predicate declared

% in this module.

* List(Formula) % List (in a definite order) of representations of the heads

% of all DELAY declarations for this predicate.

* List(Condition).% List of representations of the DELAY conditions

% corresponding to each head in the fourth argument.

DELAY ControlInProgram(x,_,_,_,_) UNTIL GROUND(x).

PREDICATE AndCondition :

Condition % Representation of a DELAY declaration condition, Cond1.

* Condition % Representation of a DELAY declaration condition, Cond2.

* Condition. % Representation of the condition Cond1 & Cond2.
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PREDICATE OrCondition :

Condition % Representation of a DELAY declaration condition, Cond1.

* Condition % Representation of a DELAY declaration condition, Cond2.

* Condition. % Representation of the condition Cond1 \/ Cond2.

PREDICATE TrueCondition :

Condition. % Representation of the DELAY condition TRUE.

PREDICATE NonVarCondition :

Term % Representation of a variable, var.

* Condition. % Representation of the DELAY condition NONVAR(var).

PREDICATE GroundCondition :

Term % Representation of a variable, var.

* Condition. % Representation of the DELAY condition GROUND(var).

PREDICATE StringCondition :

String % The string representation of a condition.

* Condition. % Representation of this condition.

DELAY StringCondition(x,y) UNTIL GROUND(x) \/ GROUND(y).

PREDICATE BaseInModule :

Program % Representation of a program.

* String % Name of a module in this program.

* ModulePart % Representation of a part keyword of this module which cannot

% be LOCAL if this module is closed.

* Name % Representation of the flat name of a base accessible to

% this part of this module.

* String. % Name of module in which this base is declared.

DELAY BaseInModule(x,_,_,_,_) UNTIL GROUND(x).



13.12. PROGRAMS 227

PREDICATE ConstructorInModule :

Program % Representation of a program.

* String % Name of a module in this program.

* ModulePart % Representation of a part keyword of this module which cannot

% be LOCAL if this module is closed.

* Name % Representation of the flat name of a constructor accessible

% to this part of this module.

* Integer % Arity of this constructor.

* String. % Name of module in which this constructor is declared.

DELAY ConstructorInModule(x,_,_,_,_,_) UNTIL GROUND(x).

PREDICATE ConstantInModule :

Program % Representation of a program.

* String % Name of a module in this program.

* ModulePart % Representation of a part keyword of this module which cannot

% be LOCAL if this module is closed.

* Name % Representation of the flat name of a constant accessible to

% this part of this module.

* Type % Representation of the type of this constant.

* String. % Name of module in which this constant is declared.

DELAY ConstantInModule(x,_,_,_,_,_) UNTIL GROUND(x).

PREDICATE FunctionInModule :

Program % Representation of a program.

* String % Name of a module in this program.

* ModulePart % Representation of a part keyword of this module which cannot

% be LOCAL if this module is closed.

* Name % Representation of the flat name of a function accessible to

% this part of this module.

* FunctionInd % Representation of the indicator for this function.

* List(Type) % List of the representations of the domain types of this

% function.

* Type % Representation of the range type of this function.

* String. % Name of module in which this function is declared.

DELAY FunctionInModule(x,_,_,_,_,_,_,_) UNTIL GROUND(x).
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PREDICATE PropositionInModule :

Program % Representation of a program.

* String % Name of a module in this program.

* ModulePart % Representation of a part keyword of this module which cannot

% be LOCAL if this module is closed.

* Name % Representation of the flat name of a proposition accessible

% to this part of this module.

* String. % Name of module in which this proposition is declared.

DELAY PropositionInModule(x,_,_,_,_) UNTIL GROUND(x).

PREDICATE PredicateInModule :

Program % Representation of a program.

* String % Name of a module in this program.

* ModulePart % Representation of a part keyword of this module which cannot

% be LOCAL if this module is closed.

* Name % Representation of the flat name of a predicate accessible to

% this part of this module.

* PredicateInd % Representation of the indicator for this predicate.

* List(Type) % List of the representations of the types for this predicate.

* String. % Name of module in which this predicate is declared.

DELAY PredicateInModule(x,_,_,_,_,_,_) UNTIL GROUND(x).

PREDICATE DelayInModule :

Program % Representation of a program.

* String % Name of a module in this program.

* ModulePart % Representation of a part keyword of this module which cannot

% be LOCAL if this module is closed.

* Formula % Representation of the Atom part of a DELAY declaration

% appearing in this part of this module.

* Condition. % Representation of the Cond part of this DELAY declaration.

DELAY DelayInModule(x,_,_,_,_) UNTIL GROUND(x).

PREDICATE ImportInModule :

Program % Representation of a program.

* String % Name of a module in this program.

* ModulePart % Representation of a part keyword of this module which cannot
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% be LOCAL if this module is closed.

* String. % Name of a module appearing in an IMPORT declaration in this

% part of this module.

DELAY ImportInModule(x,_,_,_) UNTIL GROUND(x).

PREDICATE LiftInModule :

Program % Representation of a program.

* String % Name of an open module in this program.

* String. % Name of a module appearing in a LIFT declaration in the

% local part of this module.

DELAY LiftInModule(x,_,_) UNTIL GROUND(x).

PREDICATE NewProgram :

String % A string.

* Program. % Representation of a program with this string as the name of

% the main module. If the name of the module is that of one

% of the system modules, then the program consists of that

% module and all the ones upon which it depends. Otherwise,

% the program is an empty one and the main module has both a

% local and an export part.

DELAY NewProgram(x,_) UNTIL GROUND(x).

PREDICATE InsertProgramBase :

Program % Representation of a program.

* String % Name of an open module in this program.

* ModulePart % Representation of a part keyword of this module.

* Name % Representation of the flat name of a base not declared in

% this part of this module.

* Program. % Representation of a program which differs from the program

% in the first argument only in that it also contains the

% declaration of this base in this part of this module.

DELAY InsertProgramBase(x,y,z,u,_) UNTIL GROUND(x) & GROUND(y) &

GROUND(z) & GROUND(u).
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PREDICATE DeleteProgramBase :

Program % Representation of a program.

* String % Name of an open module in this program.

* ModulePart % Representation of a part keyword of this module.

* Name % Representation of the flat name of a base declared in this

% part of this module.

* Program. % Representation of a program which differs from the program

% in the first argument only in that it does not contain the

% declaration of this base in this part of this module.

DELAY DeleteProgramBase(x,y,z,_,_) UNTIL GROUND(x) & GROUND(y) & GROUND(z).

PREDICATE InsertProgramConstructor :

Program % Representation of a program.

* String % Name of an open module in this program.

* ModulePart % Representation of a part keyword of this module.

* Name % Representation of the flat name of a constructor not

% declared in this part of this module.

* Integer % Arity of this constructor.

* Program. % Representation of a program which differs from the program

% in the first argument only in that it also contains the

% declaration of this constructor in this part of this module.

DELAY InsertProgramConstructor(x,y,z,u,v,_) UNTIL GROUND(x) & GROUND(y) &

GROUND(z) & GROUND(u) & GROUND(v).

PREDICATE DeleteProgramConstructor :

Program % Representation of a program.

* String % Name of an open module in this program.

* ModulePart % Representation of a part keyword of this module.

* Name % Representation of the flat name of a constructor declared

% in this part of this module.

* Integer % Arity of this constructor.

* Program. % Representation of a program which differs from the program

% in the first argument only in that it does not contain the

% declaration of this constructor in this part of this module.

DELAY DeleteProgramConstructor(x,y,z,_,_,_) UNTIL GROUND(x) & GROUND(y) &

GROUND(z).
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PREDICATE InsertProgramConstant :

Program % Representation of a program.

* String % Name of an open module in this program.

* ModulePart % Representation of a part keyword of this module.

* Name % Representation of the flat name of a constant not declared

% in this part of this module.

* Type % Representation of the type of this constant.

* Program. % Representation of a program which differs from the program

% in the first argument only in that it also contains the

% declaration of this constant in this part of this module.

DELAY InsertProgramConstant(x,y,z,u,v,_) UNTIL GROUND(x) & GROUND(y) &

GROUND(z) & GROUND(u) & GROUND(v).

PREDICATE DeleteProgramConstant :

Program % Representation of a program.

* String % Name of an open module in this program.

* ModulePart % Representation of a part keyword of this module.

* Name % Representation of the flat name of a constant declared in

% this part of this module.

* Type % Representation of the type of this constant.

* Program. % Representation of a program which differs from the program

% in the first argument only in that it also contains the

% declaration of this constant in this part of this module.

DELAY DeleteProgramConstant(x,y,z,_,_,_) UNTIL GROUND(x) & GROUND(y) &

GROUND(z).

PREDICATE InsertProgramFunction :

Program % Representation of a program.

* String % Name of an open module in this program.

* ModulePart % Representation of a part keyword of this module.

* Name % Representation of the flat name of a function not declared

% in this part of this module.

* FunctionInd % Representation of the indicator for this function.

* List(Type) % List of the representations of the domain types of this

% function.

* Type % Representation of the range type of this function.

* Program. % Representation of a program which differs from the program

% in the first argument only in that it also contains the

% declaration of this function in this part of this module.
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DELAY InsertProgramFunction(x,y,z,u,v,w,r,_) UNTIL GROUND(x) & GROUND(y) &

GROUND(z) & GROUND(u) & GROUND(v) & GROUND(w) & GROUND(r).

PREDICATE DeleteProgramFunction :

Program % Representation of a program.

* String % Name of an open module in this program.

* ModulePart % Representation of a part keyword of this module.

* Name % Representation of the flat name of a function declared in

% this part of this module.

* FunctionInd % Representation of the indicator for this function.

* List(Type) % List of the representations of the domain types of this

% function.

* Type % Representation of the range type of this function.

* Program. % Representation of a program which differs from the program

% in the first argument only in that it does not contain the

% declaration of this function in this part of this module.

DELAY DeleteProgramFunction(x,y,z,_,_,_,_,_) UNTIL GROUND(x) & GROUND(y) &

GROUND(z).

PREDICATE InsertProgramProposition :

Program % Representation of a program.

* String % Name of an open module in this program.

* ModulePart % Representation of a part keyword of this module.

* Name % Representation of the flat name of a proposition not

% declared in this part of this module.

* Program. % Representation of a program which differs from the program

% in the first argument only in that it also contains the

% declaration of this proposition in this part of this module.

DELAY InsertProgramProposition(x,y,z,u,_) UNTIL GROUND(x) & GROUND(y) &

GROUND(z) & GROUND(u).

PREDICATE DeleteProgramProposition :

Program % Representation of a program.

* String % Name of an open module in this program.

* ModulePart % Representation of a part keyword of this module.

* Name % Representation of the flat name of a proposition declared

% in this part of this module.
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* Program. % Representation of a program which differs from the program

% in the first argument only in that it does not contain the

% declaration of this proposition in this part of this module.

DELAY DeleteProgramProposition(x,y,z,_,_) UNTIL GROUND(x) & GROUND(y) &

GROUND(z).

PREDICATE InsertProgramPredicate :

Program % Representation of a program.

* String % Name of an open module in this program.

* ModulePart % Representation of a part keyword of this module.

* Name % Representation of the flat name of a predicate not declared

% in this part of this module.

* PredicateInd % Representation of the indicator for this predicate.

* List(Type) % List of the representations of the types of this predicate.

* Program. % Representation of a program which differs from the program

% in the first argument only in that it also contains the

% declaration of this predicate in this part of this module.

DELAY InsertProgramPredicate(x,y,z,u,v,w,_) UNTIL GROUND(x) & GROUND(y) &

GROUND(z) & GROUND(u) & GROUND(v) & GROUND(w).

PREDICATE DeleteProgramPredicate :

Program % Representation of a program.

* String % Name of an open module in this program.

* ModulePart % Representation of a part keyword of this module.

* Name % Representation of the flat name of a predicate declared in

% this part of this module.

* PredicateInd % Representation of the indicator for this predicate.

* List(Type) % List of the representations of the types of this predicate.

* Program. % Representation of a program which differs from the program

% in the first argument only in that it does not contain the

% declaration of this predicate in this part of this module.

DELAY DeleteProgramPredicate(x,y,z,_,_,_,_) UNTIL GROUND(x) & GROUND(y) &

GROUND(z).

PREDICATE InsertDelay :

Program % Representation of a program.

* String % Name of an open module in this program.
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* ModulePart % Representation of a part keyword of this module.

* Formula % Representation of a DELAY Atom part.

* Condition % Representation of a DELAY Cond part.

* Program. % Representation of a program which differs from the program

% in the first argument only in that it also contains in this

% part of this module the DELAY declaration consisting of the

% Atom part in the fourth argument and the Cond part in the

% fifth argument.

DELAY InsertDelay(x,y,z,u,v,_) UNTIL GROUND(x) & GROUND(y) & GROUND(z) &

GROUND(u) & GROUND(v).

PREDICATE DeleteDelay :

Program % Representation of a program.

* String % Name of an open module in this program.

* ModulePart % Representation of a part keyword of this module.

* Formula % Representation of the Atom part of DELAY declaration in

% this part of this module.

* Condition % Representation of the Cond part of this DELAY declaration.

* Program. % Representation of a program which differs from the program

% in the first argument only in that it does not contain

% this DELAY declaration in this part of this module.

DELAY DeleteDelay(x,y,z,_,_,_) UNTIL GROUND(x) & GROUND(y) & GROUND(z).

PREDICATE InsertStatement :

Program % Representation of a program.

* String % Name of an open module in this program.

* Formula % Representation of a statement in the flat language of this

% module wrt this program.

* Program. % Representation of a program which differs from the program

% in the first argument only in that it also contains this

% statement in this module.

DELAY InsertStatement(x,y,z,_) UNTIL GROUND(x) & GROUND(y) & GROUND(z).

PREDICATE DeleteStatement :

Program % Representation of a program.

* String % Name of an open module in this program.

* Formula % Representation of a statement in the flat language of this
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% module wrt this program appearing in this module.

* Program. % Representation of a program which differs from the program

% in the first argument only in that it does not contain this

% statement in this module.

DELAY DeleteStatement(x,y,_,_) UNTIL GROUND(x) & GROUND(y).

PREDICATE InsertProgramImport :

Program % Representation of a program.

* String % Name of an open module in this program.

* ModulePart % Representation of a part keyword of this module.

* String % Name of a module.

* Program. % Representation of a program which differs from the program

% in the first argument in that it also contains in this part

% of this module the IMPORT declaration importing the module

% in the fourth argument.

%

% If the module named in the IMPORT declaration is not already

% in the program and it is not a system module, then an empty

% module with that name is added to the program; if the module

% named in the IMPORT declaration is a system module not

% already in the program, then the system module is added to

% the program.

DELAY InsertProgramImport(x,y,z,u,_) UNTIL GROUND(x) & GROUND(y) &

GROUND(z) & GROUND(u).

PREDICATE DeleteProgramImport :

Program % Representation of a program.

* String % Name of an open module in this program.

* ModulePart % Representation of a part keyword of this module.

* String % Name of a module.

* Program. % Representation of a program which differs from the program

% in the first argument in that it contains one less IMPORT

% declaration importing the module in the fourth argument

% in this part of this module.

%

% If the IMPORT declaration deleted is the last import

% declaration in the program containing the name of a

% particular module, then this module is deleted from the

% program.
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DELAY DeleteProgramImport(x,y,z,_,_) UNTIL GROUND(x) & GROUND(y) &

GROUND(z).

PREDICATE InsertProgramLift :

Program % Representation of a program.

* String % Name of an open module in this program.

* String % Name of a module.

* Program. % Representation of a program which differs from the program

% in the first argument in that it also contains in the local

% part of this module the LIFT declaration importing the

% module in the third argument.

%

% If the module named in the LIFT declaration is not already

% in the program and it is not a system module, then an empty

% module with that name is added to the program; if the module

% named in the LIFT declaration is a system module not already

% in the program, then the system module is added to the

% program.

DELAY InsertProgramLift(x,y,z,_) UNTIL GROUND(x) & GROUND(y) & GROUND(z).

PREDICATE DeleteProgramLift :

Program % Representation of a program.

* String % Name of an open module in this program.

* String % Name of a module.

* Program. % Representation of a program which differs from the program

% in the first argument in that it contains one less LIFT

% declaration importing the module in the third argument

% in the local part of this module.

%

% If the LIFT declaration deleted is the last import

% declaration in the program containing the name of a

% particular module, then this module is deleted from the

% program.

DELAY DeleteProgramLift(x,y,_,_) UNTIL GROUND(x) & GROUND(y).

PREDICATE RunnableAtom :

Program % Representation of a program.

* Formula. % Representation of an atom in the flat language of this
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% program which has a user-defined predicate and is not

% delayed (according to any DELAY declarations for the

% predicate).

DELAY RunnableAtom(x,y) UNTIL GROUND(x) & GROUND(y).

PREDICATE Succeed :

Program % Representation of a program.

* Formula % Representation of the body of a goal in the flat language

% of this program.

* TermSubst. % Representation of a computed answer for this goal and the

% flat form of this program.

DELAY Succeed(x,y,_) UNTIL GROUND(x) & GROUND(y).

PREDICATE Compute :

Program % Representation of a program.

* Formula % Representation of the body of a goal in the flat language

% of this program.

* Integer % A non-negative integer.

* Integer % A non-negative integer.

* TermSubst % Representation of a term substitution.

* TermSubst % Representation of the term substitution obtained by

% composing the term substitution in the fifth argument with a

% computed answer for the goal whose body is obtained by

% applying the term substitution in the fifth argument to the

% body in the second argument and the flat form of this

% program or, if the computation flounders, the representation

% of the answer computed up to the step at which the

% computation floundered. Indexes of any new variables in the

% terms to which variables in the goal are bound in the

% computed answer are greater than or equal to the third

% argument and strictly less than the fourth argument.

* Formula. % Representation of the body of the last goal in the

% derivation (which is empty if the derivation succeeded

% and is non-empty if the derivation floundered).

DELAY Compute(x,y,z,_,w,_,_) UNTIL GROUND(x) & GROUND(y) & GROUND(z) &

GROUND(w).
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PREDICATE SucceedAll :

Program % Representation of a program.

* Formula % Representation of the body of a goal in the flat language

% of this program.

* List(TermSubst).% List of representations of computed answers for this goal

% and the flat form of this program.

DELAY SucceedAll(x,y,_) UNTIL GROUND(x) & GROUND(y).

PREDICATE ComputeAll :

Program % Representation of a program.

* Formula % Representation of the body of a goal in the flat language

% of this program.

* Integer % A non-negative integer.

* Integer % A non-negative integer.

* TermSubst % Representation of a term substitution.

* List(TermSubst) % List of representations of all term substitutions obtained

% by composing the term substitution in the fifth argument

% with a computed answer for the goal whose body is obtained

% by applying the term substitution in the fifth argument to

% the body in the second argument and the flat form of this

% program or, for computations which end in a flounder, the

% representation of the answer computed up to the step at

% which the computation floundered. Indexes of any new

% variables in the terms to which variables in the goal are

% bound in the computed answers are greater than or equal to

% the third argument and strictly less than the fourth

% argument.

* List(Formula). % List of representations of the bodies of the last goals in

% each of the corresponding derivations (which are empty if

% the derivation succeeded and are non-empty if the derivation

% floundered).

DELAY ComputeAll(x,y,z,_,w,_,_) UNTIL GROUND(x) & GROUND(y) & GROUND(z) &

GROUND(w).

PREDICATE Fail :

Program % Representation of a program.

* Formula. % Representation of the body of a goal in the flat language of

% this program such that this goal and the flat form of this

% program have a finitely failed search tree.
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DELAY Fail(x,y) UNTIL GROUND(x) & GROUND(y).
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13.13 Scripts

EXPORT Scripts.

% Module containing predicates provided by the ground representation of (object)

% Goedel scripts.

IMPORT Programs.

BASE Script. % Type of a term representing a script.

PREDICATE ProgramToScript :

Program % Representation of a program

* Script. % Representation of the associated script for this program.

DELAY ProgramToScript(x,_) UNTIL GROUND(x).

PREDICATE TypeInScript :

Script % Representation of a script.

* Type. % Representation of a type in the language of this script.

DELAY TypeInScript(x,y) UNTIL GROUND(x) & GROUND(y).

PREDICATE TermInScript :

Script % Representation of a script.

* VarTyping % Representation of a variable typing in the language of

% this script.

* Term % Representation of a term in the language of this script.

* Type % Representation of the type of this term with respect to this

% variable typing.

* VarTyping. % Representation of the variable typing obtained by combining

% the variable typing in the second argument with the types of

% all variables occurring in the term.

DELAY TermInScript(x,y,z,_,_) UNTIL GROUND(x) & GROUND(y) & GROUND(z).
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PREDICATE FormulaInScript :

Script % Representation of a script.

* VarTyping % Representation of a variable typing in the language

% of this script.

* Formula % Representation of a formula (that is, standard body or

% standard resultant) in the language of this script.

* VarTyping. % Representation of the variable typing obtained by combining

% the variable typing in the second argument with the types of

% all free variables occurring in the formula.

DELAY FormulaInScript(x,y,z,_) UNTIL GROUND(x) & GROUND(y) & GROUND(z).

PREDICATE BaseInScript :

Script % Representation of a script.

* Name. % Representation of the flat name of a base in the open

% language of this script.

DELAY BaseInScript(x,_) UNTIL GROUND(x).

PREDICATE ConstructorInScript :

Script % Representation of a script.

* Name % Representation of the flat name of a constructor in the open

% language of this script.

* Integer. % Arity of this constructor.

DELAY ConstructorInScript(x,_,_) UNTIL GROUND(x).

PREDICATE ConstantInScript :

Script % Representation of a script.

* Name % Representation of the flat name of a constant in the open

% language of this script.

* Type. % Representation of the type of this constant.

DELAY ConstantInScript(x,_,_) UNTIL GROUND(x).

PREDICATE FunctionInScript :

Script % Representation of a script.

* Name % Representation of the flat name of a function in the open
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% language of this script.

* FunctionInd % Representation of the indicator for this function.

* List(Type) % List of the representations of the domain types of this

% function.

* Type. % Representation of the range type of this function.

DELAY FunctionInScript(x,_,_,_,_) UNTIL GROUND(x).

PREDICATE PropositionInScript :

Script % Representation of a script.

* Name. % Representation of the flat name of a proposition in the open

% language of this script.

DELAY PropositionInScript(x,_) UNTIL GROUND(x).

PREDICATE PredicateInScript :

Script % Representation of a script.

* Name % Representation of the flat name of a predicate in the open

% language of this script.

* PredicateInd % Representation of the indicator for this predicate.

* List(Type). % List of the representations of the types for this predicate.

DELAY PredicateInScript(x,_,_,_) UNTIL GROUND(x).

PREDICATE StatementInScript :

Script % Representation of a script.

* Formula. % Representation of a statement in the open part of this

% script.

DELAY StatementInScript(x,_) UNTIL GROUND(x).

PREDICATE StatementMatchAtom :

Script % Representation of a script.

* Formula % Representation of an atom in the language of this script,

% whose proposition or predicate symbol is in the open

% language of this script.

* Formula. % Representation of a statement in the open part of this

% script whose proposition or predicate in the head is the

% same as the proposition or predicate in this atom.

DELAY StatementMatchAtom(x,z,_) UNTIL GROUND(x) & GROUND(z).
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PREDICATE DefinitionInScript :

Script % Representation of a script.

* Name % Representation of the flat name of a proposition or

% predicate in the open language of this script.

* List(Formula). % List (in a definite order) of representations of statements

% in the definition of this proposition or predicate.

DELAY DefinitionInScript(x,_,_) UNTIL GROUND(x).

PREDICATE ControlInScript :

Script % Representation of a script.

* Name % Representation of the flat name of a predicate in the

% open language of this script.

* List(Formula) % List (in a definite order) of representations of the heads

% of all DELAY declarations for this predicate.

* List(Condition).% List of representations of the DELAY conditions

% corresponding to each head in the fourth argument.

DELAY ControlInScript(x,_,_,_) UNTIL GROUND(x).

PREDICATE DelayInScript :

Script % Representation of a script.

* Formula % Representation of the Atom part of a DELAY declaration

% appearing in the open part of this script.

* Condition. % Representation of the Cond part of this DELAY declaration.

DELAY DelayInScript(x,_,_) UNTIL GROUND(x).

PREDICATE InsertScriptProposition :

Script % Representation of a script.

* Name % Representation of the flat name of a proposition whose

% module name component is not the name of a closed module

% and which is not declared in this script.

* Script. % Representation of a script which differs from the script

% in the first argument only in that it also contains the

% declaration of this proposition in its open part.

DELAY InsertScriptProposition(x,y,_) UNTIL GROUND(x) & GROUND(y).
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PREDICATE DeleteScriptProposition :

Script % Representation of a script.

* Name % Representation of the flat name of a proposition whose

% module name component is not the name of a closed module

% and which is declared in the open part of this script.

* Script. % Representation of a script which differs from the script

% in the first argument only in that it does not contain the

% declaration of this proposition in its open part.

DELAY DeleteScriptProposition(x,_,_) UNTIL GROUND(x).

PREDICATE InsertScriptPredicate :

Script % Representation of a script.

* Name % Representation of the flat name of a predicate whose

% module name component is not the name of a closed module

% and which is not declared in this script.

* PredicateInd % Representation of the indicator for this predicate.

* List(Type) % List of the representations of the types of this predicate.

* Script. % Representation of a script which differs from the script

% in the first argument only in that it also contains the

% declaration of this predicate in its open part.

DELAY InsertScriptPredicate(x,y,z,u,_) UNTIL GROUND(x) & GROUND(y) &

GROUND(z) & GROUND(u).

PREDICATE DeleteScriptPredicate :

Script % Representation of a script.

* Name % Representation of the flat name of a predicate whose

% module name component is not the name of a closed module

% and which is declared in the open part of this script.

* PredicateInd % Representation of the indicator for this predicate.

* List(Type) % List of the representations of the types of this predicate.

* Script. % Representation of a script which differs from the script

% in the first argument only in that it does not contain the

% declaration of this predicate in its open part.

DELAY DeleteScriptPredicate(x,_,_,_,_) UNTIL GROUND(x).

PREDICATE InsertDelay :
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Script % Representation of a script.

* Formula % Representation of a DELAY Atom part.

* Condition % Representation of a DELAY Cond part.

* Script. % Representation of a script which differs from the script

% in the first argument only in that it also contains in its

% open part the DELAY declaration consisting of the Atom part

% in the second argument and the Cond part in the third

% argument.

DELAY InsertDelay(x,y,z,_) UNTIL GROUND(x) & GROUND(y) & GROUND(z).

PREDICATE DeleteDelay :

Script % Representation of a script.

* Formula % Representation of the Atom part of a DELAY declaration in

% the open part of this script.

* Condition % Representation of the Cond part of this DELAY declaration.

* Script. % Representation of a script which differs from the script

% in the first argument only in that it does not contain this

% DELAY declaration in its open part.

DELAY DeleteDelay(x,_,_,_) UNTIL GROUND(x).

PREDICATE InsertStatement :

Script % Representation of a script.

* Formula % Representation of a statement in the open language of this

% script.

* Script. % Representation of a script which differs from the script

% in the first argument only in that it also contains this

% statement in the open part of the script.

DELAY InsertStatement(x,y,_) UNTIL GROUND(x) & GROUND(y).

PREDICATE DeleteStatement :

Script % Representation of a script.

* Formula % Representation of a statement in the open language of this

% script in this script.

* Script. % Representation of a script which differs from the script

% in the first argument only in that it does not contain this

% statement in the open part of the script.

DELAY DeleteStatement(x,_,_) UNTIL GROUND(x).
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13.14 Theories

EXPORT Theories.

% Module containing predicates provided by the ground representation of (object)

% theories.

IMPORT Syntax.

BASE Theory. % Type of a term representing a theory.

PREDICATE TypeInTheory :

Theory % Representation of a theory.

* Type. % Representation of a type in the flat language of this

% theory.

DELAY TypeInTheory(x,y) UNTIL GROUND(x) & GROUND(y).

PREDICATE TermInTheory :

Theory % Representation of a theory.

* VarTyping % Representation of a variable typing in the flat language of

% this theory.

* Term % Representation of a term in the flat language of this

% theory.

* Type % Representation of the type of this term with respect to this

% variable typing.

* VarTyping. % Representation of the variable typing obtained by combining

% the variable typing in the second argument with the types of

% all variables occurring in the term.

DELAY TermInTheory(x,y,z,_,_) UNTIL GROUND(x) & GROUND(y) & GROUND(z).

PREDICATE FormulaInTheory :

Theory % Representation of a theory.

* VarTyping % Representation of a variable typing in the flat language
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% of this theory.

* Formula % Representation of a formula in the flat language of this

% theory.

* VarTyping. % Representation of the variable typing obtained by combining

% the variable typing in the second argument with the types of

% all free variables occurring in the formula.

DELAY FormulaInTheory(x,y,z,_) UNTIL GROUND(x) & GROUND(y) & GROUND(z).

PREDICATE StringToTheoryType :

Theory % Representation of a theory.

* String % A string.

* List(Type). % List (in a definite order) of representations of types in

% the language of this theory whose string representation is

% the second argument.

DELAY StringToTheoryType(x,y,_) UNTIL GROUND(x) & GROUND(y).

PREDICATE StringToTheoryTerm :

Theory % Representation of a theory.

* String % A string.

* List(Term). % List (in a definite order) of representations of terms in

% the language of this theory whose string representation is

% the second argument.

DELAY StringToTheoryTerm(x,y,_) UNTIL GROUND(x) & GROUND(y).

PREDICATE StringToTheoryFormula :

Theory % Representation of a theory.

* String % A string.

* List(Formula). % List (in a definite order) of representations of formulas

% in the language of this theory whose string representation

% is the second argument.

DELAY StringToTheoryFormula(x,y,_) UNTIL GROUND(x) & GROUND(y).

PREDICATE TheoryTypeToString :

Theory % Representation of a theory.

* Type % Representation of a type.
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* String. % The string representation of this type. (Subtypes of the

% type not in the language of this theory do not appear.)

DELAY TheoryTypeToString(x,y,_) UNTIL GROUND(x) & GROUND(y).

PREDICATE TheoryTermToString :

Theory % Representation of a theory.

* Term % Representation of a term.

* String. % The string representation of this term. (Subterms of the

% term not in the language of this theory do not appear.)

DELAY TheoryTermToString(x,y,_) UNTIL GROUND(x) & GROUND(y).

PREDICATE TheoryFormulaToString :

Theory % Representation of a theory.

* Formula % Representation of a formula.

* String. % The string representation of this formula. (Terms or atoms

% of the formula not in the language of this theory do not

% appear.)

DELAY TheoryFormulaToString(x,y,_) UNTIL GROUND(x) & GROUND(y).

PREDICATE TheoryBaseName :

Theory % Representation of a theory.

* String % Name of this theory.

* String % Name of a base.

* Name. % Representation of the corresponding flat name of this base.

DELAY TheoryBaseName(x,y,z,u) UNTIL GROUND(x) &

((GROUND(y) & GROUND(z)) \/ GROUND(u)).

PREDICATE TheoryConstructorName :

Theory % Representation of a theory.

* String % Name of this theory.

* String % Name of a constructor.

* Integer % Arity of this constructor.

* Name. % Representation of the corresponding flat name of this

% constructor.

DELAY TheoryConstructorName(x,y,z,u,v) UNTIL GROUND(x) &

((GROUND(y) & GROUND(z) & GROUND(u)) \/ GROUND(v)).
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PREDICATE TheoryConstantName :

Theory % Representation of a theory.

* String % Name of this theory.

* String % Name of a constant.

* Name. % Representation of the corresponding flat name of this

% constant.

DELAY TheoryConstantName(x,y,z,u) UNTIL GROUND(x) &

((GROUND(y) & GROUND(z)) \/ GROUND(u)).

PREDICATE TheoryFunctionName :

Theory % Representation of a theory.

* String % Name of this theory.

* String % Name of a function.

* Integer % Arity of this function.

* Name. % Representation of the corresponding flat name of this

% function.

DELAY TheoryFunctionName(x,y,z,u,v) UNTIL GROUND(x) &

((GROUND(y) & GROUND(z) & GROUND(u)) \/ GROUND(v)).

PREDICATE TheoryPropositionName :

Theory % Representation of a theory.

* String % Name of this theory.

* String % Name of a proposition.

* Name. % Representation of the corresponding flat name of this

% proposition.

DELAY TheoryPropositionName(x,y,z,u) UNTIL GROUND(x) &

((GROUND(y) & GROUND(z)) \/ GROUND(u)).

PREDICATE TheoryPredicateName :

Theory % Representation of a theory.

* String % Name of this theory.

* String % Name of a predicate.

* Integer % Arity of this predicate.

* Name. % Representation of the corresponding flat name of this

% predicate.

DELAY TheoryPredicateName(x,y,z,u,v) UNTIL GROUND(x) &

((GROUND(y) & GROUND(z) & GROUND(u)) \/ GROUND(v)).



250 CHAPTER 13. SYSTEM MODULES AND UTILITIES

PREDICATE AxiomInTheory :

Theory % Representation of a theory.

* Formula. % Representation of an axiom in this theory.

DELAY AxiomInTheory(x,_) UNTIL GROUND(x).

PREDICATE BaseInTheory :

Theory % Representation of a theory.

* Name % Representation of the flat name of a base accessible to this

% theory.

* String. % Name of theory or module in which this base is declared.

DELAY BaseInTheory(x,_,_) UNTIL GROUND(x).

PREDICATE ConstructorInTheory :

Theory % Representation of a theory.

* Name % Representation of the flat name of a constructor accessible

% to this theory.

* Integer % Arity of this constructor.

* String. % Name of theory or module in which this constructor is

% declared.

DELAY ConstructorInTheory(x,_,_,_) UNTIL GROUND(x).

PREDICATE ConstantInTheory :

Theory % Representation of a theory.

* Name % Representation of the flat name of a constant accessible to

% this theory.

* Type % Representation of the type of this constant.

* String. % Name of theory or module in which this constant is declared.

DELAY ConstantInTheory(x,_,_,_) UNTIL GROUND(x).

PREDICATE FunctionInTheory :

Theory % Representation of a theory.

* Name % Representation of the flat name of a function accessible to

% this theory.

* Integer % Arity of this function.
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* FunctionInd % Indicator for this function.

* List(Type) % List of the representations of the domain types of this

% function.

* Type % Representation of the range type of this function.

* String. % Name of theory or module in which this function is

% declared.

DELAY FunctionInTheory(x,_,_,_,_,_,_) UNTIL GROUND(x).

PREDICATE PropositionInTheory :

Theory % Representation of a theory.

* Name % Representation of the flat name of a proposition accessible

% to this theory.

* String. % Name of theory or module in which this proposition is

% declared.

DELAY PropositionInTheory(x,_,_) UNTIL GROUND(x).

PREDICATE PredicateInTheory :

Theory % Representation of a theory.

* Name % Representation of the flat name of a predicate accessible to

% this theory.

* Integer % Arity of this predicate.

* PredicateInd % Indicator for this predicate.

* List(Type) % List of the representations of the types for this predicate.

* String. % Name of theory or module in which this predicate is

% declared.

DELAY PredicateInTheory(x,_,_,_,_,_) UNTIL GROUND(x).

PREDICATE ImportInTheory :

Theory % Representation of a theory.

* String. % Name of a module appearing in an IMPORT declaration in this

% theory.

DELAY ImportInTheory(x,_) UNTIL GROUND(x).
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PREDICATE NewTheory :

String % A string.

* Theory. % Representation of an empty theory with this string as the

% name of the theory.

DELAY NewTheory(x,_) UNTIL GROUND(x).

PREDICATE InsertTheoryBase :

Theory % Representation of a theory.

* Name % Representation of the flat name of a base not declared in

% this theory.

* Theory. % Representation of a theory which differs from the theory

% in the first argument only in that it also contains the

% declaration of this base.

DELAY InsertTheoryBase(x,y,_) UNTIL GROUND(x) & GROUND(y).

PREDICATE DeleteTheoryBase :

Theory % Representation of a theory.

* Name % Representation of the flat name of a base declared in this

% theory.

* Theory. % Representation of a theory which differs from the theory

% in the first argument only in that it does not contain the

% declaration of this base.

DELAY DeleteTheoryBase(x,_,_) UNTIL GROUND(x).

PREDICATE InsertTheoryConstructor :

Theory % Representation of a theory.

* Name % Representation of the flat name of a constructor not

% declared in this theory.

* Integer % Arity of this constructor.

* Theory. % Representation of a theory which differs from the theory

% in the first argument only in that it also contains the

% declaration of this constructor.

DELAY InsertTheoryConstructor(x,y,z,_) UNTIL GROUND(x) & GROUND(y) &

GROUND(z).
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PREDICATE DeleteTheoryConstructor :

Theory % Representation of a theory.

* Name % Representation of the flat name of a constructor declared

% in this theory.

* Integer % Arity of this constructor.

* Theory. % Representation of a theory which differs from the theory

% in the first argument only in that it does not contain the

% declaration of this constructor.

DELAY DeleteTheoryConstructor(x,_,_,_) UNTIL GROUND(x).

PREDICATE InsertTheoryConstant :

Theory % Representation of a theory.

* Name % Representation of the flat name of a constant not declared

% in this theory.

* Type % Representation of the type of this constant.

* Theory. % Representation of a theory which differs from the theory

% in the first argument only in that it also contains the

% declaration of this constant.

DELAY InsertTheoryConstant(x,y,z,_) UNTIL GROUND(x) & GROUND(y) &

GROUND(z).

PREDICATE DeleteTheoryConstant :

Theory % Representation of a theory.

* Name % Representation of the flat name of a constant declared in

% this theory.

* Type % Representation of the type of this constant.

* Theory. % Representation of a theory which differs from the theory

% in the first argument only in that it does not contain the

% declaration of this constant.

DELAY DeleteTheoryConstant(x,_,_,_) UNTIL GROUND(x).

PREDICATE InsertTheoryFunction :

Theory % Representation of a theory.

* Name % Representation of the flat name of a function not declared

% in this theory.

* FunctionInd % Indicator for this function.
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* List(Type) % List of the representations of the domain types of this

% function.

* Type % Representation of the range type of this function.

* Theory. % Representation of a theory which differs from the theory

% in the first argument only in that it also contains the

% declaration of this function.

DELAY InsertTheoryFunction(x,y,z,u,v,_) UNTIL GROUND(x) & GROUND(y) &

GROUND(z) & GROUND(u) & GROUND(v).

PREDICATE DeleteTheoryFunction :

Theory % Representation of a theory.

* Name % Representation of the flat name of a function declared in

% this theory.

* FunctionInd % Indicator for this function.

* List(Type) % List of the representations of the domain types of this

% function.

* Type % Representation of the range type of this function.

* Theory. % Representation of a theory which differs from the theory

% in the first argument only in that it does not contain the

% declaration of this function.

DELAY DeleteTheoryFunction(x,_,_,_,_,_) UNTIL GROUND(x).

PREDICATE InsertTheoryProposition :

Theory % Representation of a theory.

* Name % Representation of the flat name of a proposition not

% declared in this theory.

* Theory. % Representation of a theory which differs from the theory

% in the first argument only in that it also contains the

% declaration of this proposition.

DELAY InsertTheoryProposition(x,y,_) UNTIL GROUND(x) & GROUND(y).

PREDICATE DeleteTheoryProposition :

Theory % Representation of a theory.

* Name % Representation of the flat name of a proposition declared

% in this theory.

* Theory. % Representation of a theory which differs from the theory

% in the first argument only in that it does not contain the
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% declaration of this proposition.

DELAY DeleteTheoryProposition(x,_,_) UNTIL GROUND(x).

PREDICATE InsertTheoryPredicate :

Theory % Representation of a theory.

* Name % Representation of the flat name of a predicate not declared

% in this theory.

* PredicateInd % Indicator for this predicate.

* List(Type) % List of the representations of the types of this predicate.

* Theory. % Representation of a theory which differs from the theory

% in the first argument only in that it also contains the

% declaration of this predicate.

DELAY InsertTheoryPredicate(x,y,z,u,_) UNTIL GROUND(x) & GROUND(y) &

GROUND(z) & GROUND(u).

PREDICATE DeleteTheoryPredicate :

Theory % Representation of a theory.

* Name % Representation of the flat name of a predicate declared in

% this theory.

* PredicateInd % Indicator for this predicate.

* List(Type) % List of the representations of the types of this predicate.

* Theory. % Representation of a theory which differs from the theory

% in the first argument only in that it does not contain the

% declaration of this predicate.

DELAY DeleteTheoryPredicate(x,_,_,_,_) UNTIL GROUND(x).

PREDICATE InsertTheoryImport :

Theory % Representation of a theory.

* String % Name of a system module not imported into the theory.

* Theory. % Representation of a theory which differs from the theory

% in the first argument only in that it also contains the

% IMPORT declaration importing the module in the second

% argument.

DELAY InsertTheoryImport(x,y,_) UNTIL GROUND(x) & GROUND(y).
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PREDICATE DeleteTheoryImport :

Theory % Representation of a theory.

* String % Name of a system module imported into the theory.

* Theory. % Representation of a theory which differs from the theory

% in the first argument only in that it does not contain the

% IMPORT declaration importing the module in the second

% argument.

DELAY DeleteTheoryImport(x,_,_) UNTIL GROUND(x).

PREDICATE InsertAxiom :

Theory % Representation of a theory.

* Formula % Representation of a formula in the flat language of this

% theory.

* Theory. % Representation of a theory which differs from the theory

% in the first argument only in that it also contains this

% formula as an axiom.

DELAY InsertAxiom(x,y,_) UNTIL GROUND(x) & GROUND(y).

PREDICATE DeleteAxiom :

Theory % Representation of a theory.

* Formula % Representation of a formula in the flat language of this

% theory in this theory.

* Theory. % Representation of a theory which differs from the theory

% in the first argument only in that it does not contain this

% formula as an axiom.

DELAY DeleteAxiom(x,_,_) UNTIL GROUND(x).

PREDICATE Prove :

Theory % Representation of a theory.

* Formula. % Representation of a theorem of this theory.

DELAY Prove(x,y) UNTIL GROUND(x) & GROUND(y).
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13.15 IO

EXPORT IO.

% Module providing basic input/output facilities.

IMPORT Strings.

BASE InputStream, OutputStream.

%

% Stream types.

BASE ResultOfFind.

%

% Type of result indicating the success or failure of an attempt to open a

% stream.

CONSTANT StdIn : InputStream.

%

% Built-in stream corresponding to UNIX file descriptor 0.

CONSTANT StdOut, StdErr : OutputStream.

%

% Built-in stream corresponding to UNIX file descriptors 1 and 2.

CONSTANT NotFound : ResultOfFind.

%

% Indicates stream could not be opened.

FUNCTION In : InputStream -> ResultOfFind.

%

% Indicates input stream was opened successfully.

FUNCTION Out : OutputStream -> ResultOfFind.

%

% Indicates output stream was opened successfully.
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PREDICATE FindInput :

String % Name of file.

* ResultOfFind. % In(stream), where stream is the new input stream

% pointing to the beginning of the file, if the attempt

% to open the file was successful;

% otherwise, NotFound, if file could not be opened.

DELAY FindInput(x,_) UNTIL GROUND(x).

PREDICATE FindOutput :

String % Name of file.

* ResultOfFind. % Out(stream), where stream is the new output stream

% pointing to the beginning of the file, if the attempt

% to open the file was successful;

% otherwise, NotFound, if file could not be opened.

% If the file already exists it is truncated, otherwise an empty file with the

% given name is created.

DELAY FindOutput(x,_) UNTIL GROUND(x).

PREDICATE FindUpdate :

String % Name of file.

* ResultOfFind. % Out(stream), where stream is the new output stream

% pointing to the end of the file, if the attempt

% to open the file was successful;

% otherwise, NotFound, if file could not be opened.

% The file pointer is set to the end of the file if it already exists.

% Otherwise, an empty file with the given name is created.

DELAY FindUpdate(x,_) UNTIL GROUND(x).

% The previous three predicates are guaranteed to succeed if the file argument

% is instantiated and the result argument is uninstantiated. If the result

% argument is NotFound, subsequent read, write and close operations on the

% stream will fail.

PREDICATE EndInput :
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InputStream. % An open input stream to be closed.

DELAY EndInput(x) UNTIL GROUND(x).

PREDICATE EndOutput :

OutputStream. % An open output stream to be closed.

DELAY EndOutput(x) UNTIL GROUND(x).

% Closing one of the fixed streams StdIn, StdOut, or StdErr will succeed, but

% the stream is immediately reopened.

PREDICATE Get :

InputStream % An open input stream.

* Integer. % The ASCII code of the next character read from the stream

% or -1 if the end of the file has been reached.

DELAY Get(x,_) UNTIL GROUND(x).

PREDICATE ReadChar :

InputStream % An open input stream.

* String. % A string of length 1 containing the next character read from

% the stream or the empty string if the end of the file has

% been reached.

DELAY ReadChar(x,_) UNTIL GROUND(x).

PREDICATE Put :

OutputStream % An open output stream.

* Integer. % An integer between 0 and 127. The character which has this

% ASCII code is written to the stream.

DELAY Put(x,y) UNTIL GROUND(x) & GROUND(y).

PREDICATE WriteString :

OutputStream % An open output stream.

* String. % A string of characters, which are written to the stream.

DELAY WriteString(x,y) UNTIL GROUND(x) & GROUND(y).
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PREDICATE NewLine :

OutputStream. % An open output stream, to which a newline character is

% written.

DELAY NewLine(x) UNTIL GROUND(x).

PREDICATE Flush :

OutputStream. % An open output stream.

% Calling Flush forces any characters that have been written to the stream,

% but are buffered internally, to be physically written to the output device.

DELAY Flush(x) UNTIL GROUND(x).
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13.16 NumbersIO

EXPORT NumbersIO.

% Module providing input/output for integers, rationals, and floating-point

% numbers.

IMPORT IO, Numbers.

BASE FileInfo.

%

% Type for constants indicating end of file.

CONSTANT EOF, NotEOF : FileInfo.

%

% Constants indicating end of file and not end of file, respectively.

PREDICATE ReadInteger :

InputStream % An open input stream.

* Integer % An integer read from the stream unless the end of the file

% has already been reached.

* FileInfo. % EOF if already end of file; otherwise, NotEOF.

DELAY ReadInteger(x,_,_) UNTIL GROUND(x).

% ReadInteger skips over layout characters to find the next token which should

% be an integer. If the next token is not an integer, ReadInteger fails. If end

% of file has already been reached (or if there are only layout characters

% before the end of file), ReadInteger succeeds with 0 in the second argument

% and EOF in the third. If end of file has not been reached and ReadInteger

% succeeds, then NotEOF is returned in the third argument.

PREDICATE ReadRational :

InputStream % An open input stream.

* Rational % A rational read from the stream unless the end of the file

% has already been reached.

* FileInfo. % EOF if already end of file; otherwise, NotEOF.
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DELAY ReadRational(x,_,_) UNTIL GROUND(x).

% ReadRational skips over layout characters to find the next token which should

% be a rational. If the next token is not a rational, ReadRational fails. If end

% of file has already been reached (or if there are only layout characters

% before the end of file), ReadRational succeeds with 0 in the second argument

% and EOF in the third. If end of file has not been reached and ReadRational

% succeeds, then NotEOF is returned in the third argument.

PREDICATE ReadFloat :

InputStream % An open input stream.

* Float % A floating-point number read from the stream unless the end

% of the file has already been reached.

* FileInfo. % EOF if already end of file; otherwise, NotEOF.

DELAY ReadFloat(x,_,_) UNTIL GROUND(x).

% ReadFloat skips over layout characters to find the next token which should

% be a floating-point number. If the next token is not a floating-point number,

% ReadFloat fails. If end of file has already been reached (or if there are

% only layout characters before the end of file), ReadFloat succeeds with 0 in

% the second argument and EOF in the third. If end of file has not been reached

% and ReadFloat succeeds, then NotEOF is returned in the third argument.

PREDICATE WriteInteger :

OutputStream % An open output stream.

* Integer. % An integer which is written to the stream.

DELAY WriteInteger(x,y) UNTIL GROUND(x) & GROUND(y).

PREDICATE WriteRational :

OutputStream % An open output stream.

* Rational. % A rational which is written to the stream.

DELAY WriteRational(x,y) UNTIL GROUND(x) & GROUND(y).
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PREDICATE WriteFloat :

OutputStream % An open output stream.

* Float. % A floating-point number which is written to the stream.

DELAY WriteFloat(x,y) UNTIL GROUND(x) & GROUND(y).



264 CHAPTER 13. SYSTEM MODULES AND UTILITIES

13.17 FlocksIO

EXPORT FlocksIO.

% Module providing input/output for flocks.

IMPORT IO, Flocks.

PREDICATE GetFlock :

InputStream % An open input stream corresponding to a file with a .flk

% extension.

* Flock. % The representation of the flock in the file corresponding to

% the input stream in the first argument is read into this

% argument.

DELAY GetFlock(x,_) UNTIL GROUND(x).

PREDICATE PutFlock :

OutputStream % An open output stream corresponding to a file with a .flk

% extension.

* Flock. % The representation of the flock in this argument is

% written to the output stream in the first argument.

DELAY PutFlock(x,y) UNTIL GROUND(x) & GROUND(y).
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13.18 ProgramsIO

EXPORT ProgramsIO.

% Module providing input/output for the ground representation of (object)

% Goedel programs.

IMPORT IO, Programs.

PREDICATE GetProgram :

InputStream % An open input stream corresponding to a file with a .prm

% extension.

* Program. % The ground representation of the program in the file

% corresponding to the input stream in the first argument is

% read into this argument.

DELAY GetProgram(x,_) UNTIL GROUND(x).

PREDICATE PutProgram :

OutputStream % An open output stream corresponding to a file with a .prm

% extension.

* Program. % The ground representation of the program in this argument is

% written to the output stream in the first argument.

DELAY PutProgram(x,y) UNTIL GROUND(x) & GROUND(y).
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13.19 ScriptsIO

EXPORT ScriptsIO.

% Module providing input/output for the ground representation of (object)

% Goedel scripts.

IMPORT IO, Scripts.

PREDICATE GetScript :

InputStream % An open input stream corresponding to a file with a .scr

% extension.

* Script. % The ground representation of the script in the file

% corresponding to the input stream in the first argument is

% read into this argument.

DELAY GetScript(x,_) UNTIL GROUND(x).

PREDICATE PutScript :

OutputStream % An open output stream corresponding to a file with a .scr

% extension.

* Script. % The ground representation of the script in this argument is

% written to the output stream in the first argument.

DELAY PutScript(x,y) UNTIL GROUND(x) & GROUND(y).
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13.20 TheoriesIO

EXPORT TheoriesIO.

% Module providing input/output for the ground representation of (object)

% theories.

IMPORT IO, Theories.

PREDICATE GetTheory :

InputStream % An open input stream corresponding to a file with a .thy

% extension.

* Theory. % The ground representation of the theory in the file

% corresponding to the input stream in the first argument is

% read into this argument.

DELAY GetTheory(x,_) UNTIL GROUND(x).

PREDICATE PutTheory :

OutputStream % An open output stream corresponding to a file with a .thy

% extension.

* Theory. % The ground representation of the theory in this argument is

% written to the output stream in the first argument.

DELAY PutTheory(x,y) UNTIL GROUND(x) & GROUND(y).
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13.21 System Utilities

This section contains a description of the system utilities that are provided by Gödel.

• flock-compile "File" "Flock" – takes a file File containing a flock and produces a file
Flock.flk containing the internal representation of this flock.

• flock-decompile "Flock" "File" – takes a file Flock.flk containing the internal repre-
sentation of a flock and produces a file File containing this flock.

• program-compile Main – takes a program with main module Main and produces the ground
representation of the program in a file Main.prm.

• program-decompile "File" – takes a file File which contains the ground representation
of a program and produces files containing the modules of this program.

• theory-compile Name – takes a file containing the theory Name and produces the ground
representation of the theory in the file Name.thy.

• theory-decompile "File" – takes a file File which contains the ground representation of
a theory and produces a file containing this theory.

• script-view Name – allows viewing of the script whose ground representation is in the file
Name.scr.



Appendix A

Polymorphic Many-Sorted Logic

Many-sorted first order logic generalises ordinary (unsorted) first order logic ([7], [16]) in that
it has sort declarations for the variables, constants, functions, and predicates. We can regard
(unsorted) logic as a special case in which there is only one sort. In the general case, there are
a number of (possibly infinitely many) sorts. Each constant, for example, is then specified as
having a particular sort. There is also a natural definition of what it means for an expression to
be a formula in the many-sorted language. For the declarative semantics, we have to generalise
the usual notions of interpretation, logical consequence, and so on. The key idea here is that
a many-sorted interpretation has a domain for every sort (instead of just one domain for an
unsorted logic). Then each constant, for example, is assigned by the interpretation an element of
the domain corresponding to its sort. The remainder of the declarative concepts can be developed
in a natural way. Polymorphism is introduced by adding parameters, which are sort variables, and
constructors. Generally speaking, the development of the theory of (unsorted) logic can be carried
through with only minor changes for the more general case of polymorphic many-sorted logic.
For further discussion on many-sorted logic beyond that given in this appendix, see [7]. There
is also some discussion of many-sorted logic with applications to deductive database systems in
[15]. In the following, to conform to the terminology normally used in programming languages,
we refer to a sort as a type. For clarity, we treat many-sorted logic in detail first, then consider
polymorphic many-sorted logic. We also give definitions of the basic logic programming concepts
of program, completion, and correct answer in the setting of polymorphic many-sorted logic.

A.1 Many-sortedness

The alphabet of a many-sorted language contains types, variables, constants, functions, proposi-
tions, predicates, connectives, and quantifiers. In general, there is at least one type. Also there
are zero or more constants and functions, and at least one proposition or predicate. Types are
denoted by Greek letters such as τ and σ. Variables and constants have types such as τ . For
each type τ , there are denumerably many variables v1τ , v

2
τ , . . . of type τ . Occasionally it will be

convenient to omit the superscript on a variable. Functions of arity n have types of the form
τ1 × . . . × τn → τ , and predicates of arity n have types of the form τ1 × . . . × τn. If f has type
τ1 × . . .× τn → τ , we say f has range type τ . For each type τ , there is a universal quantifier ∀τ
and an existential quantifier ∃τ .

269



270 APPENDIX A. POLYMORPHIC MANY-SORTED LOGIC

Definition A term is defined inductively as follows:

1. A variable of type τ is a term of type τ .

2. A constant of type τ is a term of type τ .

3. If f is an n-ary function of type τ1 × . . .× τn → τ and ti is a term of type τi (i = 1, . . . , n),
then f(t1, . . . , tn) is a term of type τ .

Next we define many-sorted formulas. These formulas will be rectified, in the sense that no
variable can be bound by more than one quantifier and no variable can be both bound and free.

Definition A many-sorted formula is defined inductively as follows:

1. If p is a proposition, then p is a many-sorted atomic formula.

2. If p is an n-ary predicate of type τ1× . . .× τn and ti is a term of type τi (i = 1, . . . , n), then
p(t1, . . . , tn) is a many-sorted atomic formula.

3. If F and G are many-sorted formulas (whose common variables are free in both formulas),
then so are ∼ F , F ∧G, F ∨G, F → G, and F ↔ G.

4. If F is a many-sorted formula and vτ is a variable (free in F ) of type τ , then ∀τvτ F and
∃τvτ F are many-sorted formulas.

Definition The many-sorted language given by an alphabet consists of the set of all many-
sorted formulas constructed from the symbols of the alphabet.

We let ∀(F ) denote the universal closure of the formula F and ∃(F ) denote the existential
closure. The universal closure of F is obtained by prefixing F with universal quantifiers, each one
corresponding to a free variable in F . The existential closure is defined analogously.

Now we turn to the declarative semantics of many-sorted languages.

Definition A pre-interpretation of a many-sorted language consists of the following:

1. For each type τ , a non-empty set Dτ , called the domain of type τ of the pre-interpretation.

2. For each constant of type τ , the assignment of an element in Dτ .

3. For each n-ary function of type τ1 × . . . × τn → τ , the assignment of a mapping from
Dτ1 × . . .×Dτn to Dτ .

Definition An interpretation I of a many-sorted language consists of a pre-interpretation J
with domains {Dτ} together with the following:

1. For each proposition, the assignment of a value, true or false.

2. For each n-ary predicate of type τ1×. . .×τn, the assignment of a mapping fromDτ1×. . .×Dτn

to {true, false} (or, equivalently, a relation on Dτ1 × . . .×Dτn).
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Definition Let J be a pre-interpretation of a many-sorted language. A variable assignment
(wrt J) is an assignment to each variable of type τ of an element in the domain Dτ of J , for each
type τ .

Definition Let J be a pre-interpretation with domains {Dτ} of a many-sorted language L
and let V be a variable assignment. The term assignment (wrt J and V ) of the terms in L is
defined as follows:

1. Each variable is given its assignment according to V .

2. Each constant is given its assignment according to J .

3. If t′1, . . . , t
′

n are the term assignments of t1, . . . , tn and f ′ is the assignment of the n-ary
function f of range type τ , then f ′(t′1, . . . , t

′

n) ∈ Dτ is the term assignment of f(t1, . . . , tn).

Definition Let I be an interpretation with domains {Dτ} of a many-sorted language L and
let V be a variable assignment. Then a formula in L can be given a truth value, true or false,
(wrt I and V ) as follows:

1. If the formula is a proposition p, then the truth value of the formula is the same as the
value assigned to p by I.

2. If the formula is an atom p(t1, . . . , tn), then the truth value is obtained by calculating the
value of p′(t′1, . . . , t

′

n), where p
′ is the mapping assigned to p by I and t′1, . . . , t

′

n are the term
assignments of t1, . . . , tn wrt I and V .

3. If the formula has the form ∼ F , F ∧ G, F ∨ G, F → G, or F ↔ G, then the truth value
of the formula is given by the following table:

F G ∼ F F ∧G F ∨G F → G F ↔ G
true true false true true true true
true false false false true false false
false true true false true true false
false false true false false true true

4. If the formula has the form ∃τvτ F , then the truth value of the formula is true if there exists
d ∈ Dτ such that F has truth value true wrt I and V (vτ/d), where V (vτ/d) is V except
that vτ is assigned d; otherwise, its truth value is false.

5. If the formula has the form ∀τvτ F , then the truth value of the formula is true if, for all
d ∈ Dτ , we have that F has truth value true wrt I and V (vτ/d); otherwise, its truth value
is false.

The truth value of a closed formula does not depend on the variable assignment. Consequently,
we can speak unambiguously of the truth value of a closed formula wrt to an interpretation. If the
truth value of a closed formula wrt to an interpretation is true (resp., false), we say the formula
is true (resp,. false) wrt to the interpretation.
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Definition Let I be an interpretation of a many-sorted language L and let F be a closed
formula of L. Then I is a model for F if F is true wrt I.

The axioms of a many-sorted theory are a designated subset of closed formulas in the language
of the theory. For example, the many-sorted theories in which we are most interested have the
statements of a program as their axioms.

Definition Let T be a many-sorted theory and let L be the language of T . A model for T is
an interpretation for L which is a model for each axiom of T .

If T has a model, we say T is consistent.

The concept of a model of a closed formula can easily be extended to a model of a set of closed
formulas.

Definition Let S be a set of closed formulas of a many-sorted language L and let I be an
interpretation of L. We say I is a model for S if I is a model for each formula of S.

Now we can give the definition of the important concept of logical consequence.

Definition Let S be a set of closed formulas and F be a closed formula of a many-sorted
language L. We say F is a logical consequence of S if, for every interpretation I of L, I is a model
for S implies that I is a model for F .

There is a transformation of many-sorted formulas into (unsorted) formulas, which shows that
the apparent extra generality provided by many-sorted logics is illusory [7]. This transformation
allows one to reduce the proof of a theorem in many-sorted logic to a corresponding theorem in
(unsorted) logic. The existence of this theorem makes many-sorted logic a mathematically trivial
extension of (unsorted) logic and explains why so few logic books even mention many-sorted logic.
However, many-sorted logic is more expressive than (unsorted) logic and it avoids having to use
the type predicates that are introduced in the mapping to (unsorted) logic.

A.2 Polymorphism

Next we introduce (parametric) polymorphism into the logic. For this, we extend the alphabet
by adding parameters, bases, and constructors. Parameters are type variables; bases correspond
to what were called types in the many-sorted case; and constructors have an arity and are used
to construct new types. In contrast to the many-sorted case, there is now a single polymorphic
universal quantifier ∀ and a single polymorphic existential quantifier ∃. Also variables do not
have fixed types as in the many-sorted case, but have their types inferred from the context in
which they occur. We assume that there are denumerably many variables v1, v2, . . . .

Definition A type is defined inductively as follows:

1. A parameter is a type.

2. A base is a type.

3. If c is a constructor of arity n and τ1, . . . , τn are types, then c(τ1, . . . , τn) is a type.

A ground type is a type not containing parameters.
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In a polymorphic many-sorted language, constants have types such as τ , functions have types
of the form τ1× . . .× τn → τ , and predicates have types of the form τ1× . . .× τn (where each type
is defined according to the preceding definition). A symbol is polymorphic if its type contains a
parameter; otherwise, it is monomorphic. A polymorphic symbol can be intuitively understood
as representing a collection of (monomorphic) symbols, one for each ground instance of its type.
(See below.)

We now define the concept of a term t of type τ so that each subterm of t has a type in t and
multiple occurrences of a variable in t all have the same type in t.

Definition A term is defined inductively as follows:

1. A variable v is a term of type a, where a is a parameter, and the subterm v has the type a
in v.

2. A constant c of type τ is a term of type τ and the subterm c has type τ in c.

3. Let f be a function of type τ1× . . .× τn → τ and let ti be a term of type σi, for i = 1, . . . , n.
Suppose that the parameters in τ1 × . . . × τn → τ and the parameters of each σi, taken
together with the parameters in the types in ti of each of the subterms of ti, are standardized
apart. Consider the set of equations
σ1 = τ1, . . . , σn = τn
augmented with equations of the form
ρi1 = ρi2 = . . . = ρik
for each variable having an occurrence in the terms ti1 , . . . , tik ({i1, . . . , ik} ⊆ {1, . . . , n},
k > 1), say, and where the variable is assigned the type ρij in tij (j = 1, . . . , k). Then we
say that f(t1, . . . , tn) is a term if and only if this set of equations has a most general unifier
θ, say. In this case, f(t1, . . . , tn) has type τθ and the subterm f(t1, . . . , tn) has type τθ in
f(t1, . . . , tn). A strict subterm of f(t1, . . . , tn), which must be a subterm of some ti and has
type σ, say, in ti, has type σθ in f(t1, . . . , tn).

Note that multiple occurrences of a variable in f(t1, . . . , tn) all have the same type in
f(t1, . . . , tn). Also the type of f(t1, . . . , tn) and the type in f(t1, . . . , tn) of each of its subterms is
unique up to variants.

Next we define the concept of an atom A so that each subterm of A has a type in A and
multiple occurrences of a variable in A all have the same type in A.

Definition An atom is defined as follows:

1. A proposition p is an atom.

2. Let p be a predicate with type τ1× . . .× τn and let ti be a term of type σi, for i = 1, . . . , n.
Suppose that the parameters in τ1 × . . .× τn and the parameters of each σi, taken together
with the parameters in the types in ti of each of the subterms of ti, are standardized apart.
Consider the set of equations
σ1 = τ1, . . . , σn = τn
augmented with equations of the form
ρi1 = ρi2 = . . . = ρik
for each variable having an occurrence in the terms ti1 , . . . , tik ({i1, . . . , ik} ⊆ {1, . . . , n},
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k > 1), say, and where the variable has the type ρij in tij (j = 1, . . . , k). Then we say that
p(t1, . . . , tn) is an atom if and only if this set of equations has a most general unifier θ, say.
In this case, a subterm of p(t1, . . . , tn), which must be a subterm of some ti and has type σ,
say, in ti, has the type σθ in p(t1, . . . , tn).

Note that multiple occurrences of a variable in p(t1, . . . , tn) all have the same type in
p(t1, . . . , tn). Also the type in p(t1, . . . , tn) of each of its subterms is unique up to variants.

Now we can give the definition of a polymorphic many-sorted formula F so that each subterm
of F has a type in F and multiple occurrences of a variable in F all have the same type in F .

Definition A polymorphic many-sorted formula is defined inductively as follows:

1. An atom is a formula. Each subterm of the atom having type τ in the atom has the type
τ in the formula.

2. If F is a formula, then so is ∼ F . Each subterm of F having type τ in F has type τ in ∼ F .

3. Let F and G be formulas, whose common variables are free in both formulas. Suppose that
the parameters in types of subterms of F are standardized apart from the parameters in
types of subterms of G. For each variable in common with F and G, form the equation
ρ = σ
where ρ is the type assigned to the variable in F and σ is the type assigned to the variable
in G. Then F ∧ G (resp., F ∨ G, F → G, F ↔ G) is a formula if and only if the set of
equations has a most general unifier θ, say. In this case, a subterm of F ∧G (resp., F ∨G,
F → G, F ↔ G), which must be a subterm of either F or G and has type ρ in F or G, has
type ρθ in F ∧G (resp., F ∨G, F → G, F ↔ G).

4. Let F be a formula containing a free variable v. Then ∀v F is a formula and every subterm
of ∀v F has the same type in this formula as it has in F .

5. Let F be a formula containing a free variable v. Then ∃v F is a formula and every subterm
of ∃v F has the same type in this formula as it is has in F .

Note that multiple occurrences of a variable in a formula have the same type in the formula.
Also the types of subterms of a formula are unique up to variants.

The universal closure and existential closure of a polymorphic formula can be defined by
obvious extensions of the many-sorted definitions.

A polymorphic formula can be intuitively understood as representing a collection of (monomor-
phic) formulas. We now make this idea more precise.

Definition Let L be a polymorphic many-sorted language. The underlying many-sorted
language of L is the (monomorphic) many-sorted language L∗ with the following alphabet:

1. The types of L∗ are the ground types of L. (Any structure in a ground type is ignored.)

2. For each ground type δ in L, there are denumerably many variables v1δ , v
2
δ , . . . in L∗.

3. For each constant c of type τ in L and ground instance δ of τ , there is a constant cδ of type
δ in L∗.
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4. For each function f of type τ1 × . . . × τn → τ in L and ground instance δ1 × . . . × δn → δ
of τ1 × . . .× τn → τ , there is a function fδ1×...×δn→δ of type δ1 × . . .× δn → δ in L∗.

5. The propositions of L∗ are the propositions of L.

6. For each predicate p of type τ1×. . .×τn in L and ground instance δ1×. . .×δn of τ1×. . .×τn,
there is a predicate pδ1×...×δn of type δ1 × . . .× δn in L∗.

Definition Let F be a formula in a polymorphic many-sorted language. Each occurrence of
a variable, constant, function, or predicate in F has a relative type in F defined as follows.

1. The relative type of an occurrence of a variable v in F is the type of v in F .

2. The relative type of an occurrence of a constant c in F is the type of the subterm c in F .

3. Consider an occurrence of the function f in the subterm f(t1, . . . , tn) of F . Suppose the
subterm f(t1, . . . , tn) has type τ in F and the subterm ti has type τi in F (i = 1, . . . , n).
Then the relative type of this occurrence of f in F is τ1 × . . .× τn → τ .

4. Consider an occurrence of the predicate p in the atom p(t1, . . . , tn) of F . Suppose the
subterm ti has type τi in F (i = 1, . . . , n). Then the relative type of this occurrence of p in
F is τ1 × . . .× τn.

Note that the relative type of a constant in a formula is an instance of its type in the language.
A similar comment applies to functions and predicates.

Definition Let F be a formula in a polymorphic many-sorted language. A grounding type
substitution is a type substitution which binds all the parameters appearing in relative types of
symbols in F to ground types.

Definition Let F be a formula in a polymorphic many-sorted language L and Ψ be a ground-
ing type substitution for F . The many-sorted formula FΨ in the language L∗ is obtained by
replacing all occurrences of symbols in F as follows:

1. For an occurrence of a variable v of relative type τ appearing in F , replace v by the variable
vτΨ.

2. For an occurrence of a constant c of relative type τ appearing in F , replace c by the constant
cτΨ.

3. For an occurrence of a function f of relative type τ1× . . .× τn → τ appearing in F , replace
f by the function fτ1Ψ×...×τnΨ→τΨ.

4. For an occurrence of a predicate p of relative type τ1 × . . . × τn appearing in F , replace p
by the predicate pτ1Ψ×...×τnΨ.

Now we can give precise meaning to the intuitive concept of a polymorphic many-sorted
formula representing a set of (monomorphic) many-sorted formulas.

Definition Let F be a formula in a polymorphic many-sorted language. The set
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{FΨ : Ψ is a grounding type substitution for F}

is called the set of many-sorted formulas underlying F .

Now we turn to the declarative semantics of polymorphic many-sorted languages.

Definition A pre-interpretation of a polymorphic many-sorted language consists of the fol-
lowing:

1. For each ground type δ, a non-empty set Dδ, called the domain of type δ of the pre-
interpretation.

2. For each constant of type τ and for each ground instance δ of τ , the assignment of an
element in Dδ.

3. For each n-ary function of type τ1×. . .×τn → τ and for each ground instance δ1×. . .×δn → δ
of τ1 × . . .× τn → τ , the assignment of a mapping from Dδ1 × . . .×Dδn to Dδ.

Definition An interpretation I of a polymorphic many-sorted language consists of a pre-
interpretation J with domains {Dδ} together with the following:

1. For each proposition, the assignment of a value, true or false.

2. For each n-ary predicate of type τ1 × . . . × τn and for each ground instance δ1 × . . . × δn
of τ1 × . . . × τn, the assignment of a mapping from Dδ1 × . . . × Dδn to {true, false} (or,
equivalently, a relation on Dδ1 × . . .×Dδn).

An interpretation for a polymorphic many-sorted language L can also be regarded as an
interpretation for the many-sorted language L∗ underlying L in the obvious way.

Definition Let I be an interpretation of a polymorphic many-sorted language L and F be a
closed formula of L. The truth value of F wrt I is true if, for every grounding type substitution
Ψ for F , the truth value of FΨ is true wrt I. The truth value of F wrt I is false if, for every
grounding type substitution Ψ for F , the truth value of FΨ is false wrt I.

If the truth value of a closed formula wrt to an interpretation is true (resp., false), we say the
formula is true (resp,. false) wrt to the interpretation.

We conclude with the definitions of model, consistency, and logical consequence, which are
analogous to the many-sorted case.

Definition Let I be an interpretation of a polymorphic many-sorted language L and F be a
closed formula of L. Then I is a model for F if F is true wrt I.

Definition Let T be a polymorphic many-sorted theory and let L be the language of T . A
model for T is an interpretation for L which is a model for each axiom of T .

If T has a model, we say T is consistent.

Definition Let S be a set of closed formulas of a polymorphic many-sorted language L and
let I be an interpretation of L. We say I is a model for S if I is a model for each formula of S.
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Definition Let S be a set of closed formulas and F be a closed formula of a polymorphic
many-sorted language L. We say F is a logical consequence of S if, for every interpretation I of
L, I is a model for S implies that I is a model for F .

A.3 Logic Programming Concepts

In this section, we give the definitions of the basic declarative logic programming concepts of pro-
gram, completion, and correct answer in the context of polymorphic many-sorted logic. Through-
out this section, we suppose the definitions are given in the context of some fixed, but arbitrary,
polymorphic many-sorted language.

Definition A statement is a polymorphic many-sorted formula of the form

A← W

where A is an atom and W is a polymorphic many-sorted formula. The formula W may be
absent. Any variables in A and any free variables in W are assumed to be universally quantified
at the front of the statement. A is called the head and W the body of the statement.

Definition A program is a finite set of statements.

Definition A goal is a polymorphic many-sorted formula of the form

← W

where W is a polymorphic many-sorted formula and any free variables of W are assumed to be
universally quantified at the front of the goal.

Next we give the definition of the completion of a program.

Definition The definition of a predicate p appearing in a program P is the set of all statements
in P which have p in their head.

Definition Suppose the definition of a predicate p in a program is

A1 ← W1

. . .
Ak ← Wk

Then the completed definition of p is the formula

∀x1 . . . ∀xn(p(x1, . . . , xn)↔ E1 ∨ . . . ∨ Ek)

where Ei is ∃y1 . . . ∃yd((x1 = t1) ∧ . . . ∧ (xn = tn) ∧Wi), Ai is p(t1, . . . , tn), y1, . . . , yd are the
variables in Ai and the free variables in Wi, and x1, . . . , xn are variables not appearing anywhere
in the definition of p.

Example Let the definition of p be
p(x)← q(x, y)
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p(b)←
Then the completed definition for p is

∀z(p(z)↔ (∃x∃y((z = x) ∧ q(x, y)) ∨ (z = b))).

Definition Let P be a program and p a predicate occurring in P . Suppose there is no
program statement in P with predicate p in its head. Then the completed definition of p is the
formula

∀x1 . . . ∀xn ∼ p(x1, . . . , xn).

The equality theory for a program consists of all axioms of the following form:

1. c 6= d, for all pairs c, d of distinct constants whose types have a common instance.

2. ∀(f(x1, . . . , xn) 6= g(y1, . . . , ym)), for all pairs f , g of distinct functions whose range types
have a common instance.

3. ∀(f(x1, . . . , xn) 6= c), for each constant c and function f such that the type of c and the
range type of f have a common instance.

4. ∀(t[x] 6= x), for each term t[x] containing x and different from x.

5. ∀((x1 6= y1) ∨ . . . ∨ (xn 6= yn) → f(x1, . . . , xn) 6= f(y1, . . . , yn)), for each function f .

6. ∀x(x = x).

7. ∀((x1 = y1) ∧ . . . ∧ (xn = yn) → f(x1, . . . , xn) = f(y1, . . . , yn)), for each function f .

8. ∀((x1 = y1) ∧ . . . ∧ (xn = yn) → (p(x1, . . . , xn) → p(y1, . . . , yn))), for each predicate p
(including =).

Definition Let P be a program. The completion of P , denoted by comp(P ), is the collection
of completed definitions of predicates in P together with the above equality theory.

Definition Let P be a program, G a goal ← W , and θ an answer for P ∪ {G}. We say θ is
a correct answer for comp(P ) ∪ {G} if ∀(Wθ) is a logical consequence of comp(P ).

The concept of a correct answer gives a declarative description of the desired output from a
goal to a program.
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InsertProgramProposition, 232
InsertScriptPredicate, 244
InsertScriptProposition, 243
InsertStatement, 234, 245
InsertTheoryBase, 252
InsertTheoryConstant, 253
InsertTheoryConstructor, 252
InsertTheoryFunction, 253
InsertTheoryImport, 255
InsertTheoryPredicate, 255
InsertTheoryProposition, 254
InsertUnit, 198
IntegerPart, 175
IntegerString, 181
IntegerToFloat, 176
IntensionalSet, 202
Interval, 166
IsImpliedBy, 200

JoinTables, 193

LastNode, 194
LastSubstring, 190
Length, 185
LiftInModule, 229
ListTable, 194
Literal, 205
Log, 176
Log10, 176

MainModuleInProgram, 223
Max, 165, 168, 173
MaxExponent, 178
MaxFloat, 178
Member, 183
MemberCheck, 183
Merge, 186
Min, 165, 169, 173
MinExponent, 178
MinFloat, 179

MinNormFloat, 179
Mod, 164
ModuleInProgram, 224

NewLine, 260
NewProgram, 229
NewTheory, 252
NextNode, 194
NodeInTable, 192
NonParType, 204
NonVarCondition, 226
NonVarTerm, 204
NormalBody, 206
NormalGoal, 206
NormalResultant, 207
NormalStatement, 207
Not, 200

OpaqueAtom, 209
OpaqueTerm, 209
OpaqueType, 208
OpenModule, 224
Or, 200
OrCondition, 226
Out, 257

Parameter, 202
ParameterName, 202
Permutation, 184
Precision, 178
Predecessor, 174
PredicateAtom, 208
PredicateInModule, 228
PredicateInScript, 242
PredicateInTheory, 251
Prefix, 185
PreviousNode, 194
ProgramBaseName, 222
ProgramConstantName, 222
ProgramConstructorName, 222
ProgramFormulaToString, 222
ProgramFunctionName, 223
ProgramPredicateName, 223
ProgramPropositionName, 223
ProgramTermToString, 221
ProgramToScript, 240
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ProgramTypeToString, 221
PropositionAtom, 208
PropositionInModule, 228
PropositionInScript, 242
PropositionInTheory, 251
Prove, 256
Put, 259
PutFlock, 264
PutProgram, 265
PutScript, 266
PutTheory, 267

Radix, 178
RationalString, 181
RationalToFloat, 181
ReadChar, 259
ReadFloat, 262
ReadInteger, 261
ReadRational, 261
RenameFormulas, 215
RenameTerms, 214
RenameTypes, 214
ResolveAll, 216
RestrictSubstToFormula, 211
RestrictSubstToTerm, 210
RestrictSubstToType, 210
Resultant, 207
Reverse, 185
Round, 174
RoundToInteger, 177
RunnableAtom, 236

Scale, 173
Sign, 173
Sin, 175
Size, 188
Some, 201
Sort, 186
Sorted, 185
Sqrt, 173
StandardiseFormula, 216
StandardRational, 169
Statement, 207
StatementInModule, 224
StatementInScript, 242
StatementMatchAtom, 225, 242

StrictSubset, 188
StringCondition, 226
StringInts, 189
StringToProgramFormula, 221
StringToProgramTerm, 220
StringToProgramType, 220
StringToTheoryFormula, 247
StringToTheoryTerm, 247
StringToTheoryType, 247
StringToUnit, 195
Subset, 188
Succeed, 237
SucceedAll, 238
Successor, 174
Suffix, 185

Tan, 175
TermInModule, 219
TermInProgram, 218
TermInScript, 240
TermInTheory, 246
TermMaxVarIndex, 203
TermVariables, 203
TheoryBaseName, 248
TheoryConstantName, 249
TheoryConstructorName, 248
TheoryFormulaToString, 248
TheoryFunctionName, 249
TheoryPredicateName, 249
TheoryPropositionName, 249
TheoryTermToString, 248
TheoryTypeToString, 247
TrueCondition, 226
Truncate, 174
TruncateToInteger, 177
TypeInModule, 219
TypeInProgram, 218
TypeInScript, 240
TypeInTheory, 246
TypeMaxParIndex, 202
TypeParameters, 204

UnifyAtoms, 214
UnifyTerms, 213
UnifyTypes, 213
UnitArgument, 196
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UnitInFlock, 197
UnitInLastPlace, 174
UnitParts, 195
UnitToString, 195
UnitWithIdentifier, 197
UpdateTable, 193

Variable, 203
VariableName, 203
VariantFormulas, 215
VariantTerms, 215
VariantTypes, 215

Width, 190
WriteFloat, 263
WriteInteger, 262
WriteRational, 262
WriteString, 259

XF, 199
XFX, 199
XFY, 199

YF, 199
YFX, 199
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:, 24
=, 31
&, 23
->, 23
<-, 23
<->, 23
\/, 23
{. . .}, 70, 72
{. . .}_n, 70, 74
|, 13, 70
~, 23
_, 24, 33
~=, 31
1-import, 45, 149
1-redeclare, 45, 149

abstract data type, 6
accessible to, 41, 45, 149
ALL, 23
ambiguity, 46
assert, 10, 12
associated program, 101
associated script, 101
associativity, 28
atom, 273

bar commit, 7, 13, 71
BASE, 15
base, 15, 272
body, 20, 48, 78, 277
built-in predicate, 31, 33
built-in proposition, 33

category, 15
CLOSED, 41
closed module, 43, 151
closed part, 101
colon, 24
commit, 7, 70

commit label, 76
completed definition, 277, 278
completion, 278
computation rule, 6, 65
conditional, 25
consistent, 272, 276
CONSTANT, 15
constant, 15
constraint solving, 5, 6, 35, 38
CONSTRUCTOR, 15
constructor, 15, 17, 272
control, 5, 65
control component of a program, 4
control declaration, 5, 6, 15, 66, 68, 150
correct answer, 278
cut node, 79, 159

declarative semantics, 157
declare a symbol, 15, 41, 45, 149
declared name, 94
definite body, 156
definite goal, 156
definite resultant, 156
definite statement, 156
definition, 277
DELAY declaration, 6, 65, 68, 150, 158
depends upon, 45, 147
disequality, 31
domain of type δ, 276
domain of type τ , 270

eager pruning, 81
equality, 31
equality theory, 278
error message, 36
explanation for a pruning step, 79, 159
EXPORT, 41
export a symbol, 42, 45, 149

286
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export declaration, 41
export language of a module, 48, 151
export part, 41
extensional set term, 54

False, 33
Fibonacci, 108
fixity, 28
flat export language of a module, 94
flat form of a program, 94, 157
flat form of a theory, 103
flat language of a module, 94
flat language of a program, 94
flat language of a theory, 103
flat name, 48, 94
Floats, 38, 170
flock, 62, 155
flock-compile, 62
flock-decompile, 62
Flocks, 62, 197
FlocksIO, 62, 86, 264
formula, 19, 23, 274
FUNCTION, 15
function, 15
function indicator, 28

goal, 20, 48, 78, 154, 277
goal language of a program, 48, 151
goal language of a script, 101
Gödel pruning operator, 70, 74
ground representation, 11, 89, 103
ground type, 18, 272
grounding type substitution, 275

head, 20, 48, 277
head condition, 21, 151

IF-THEN, 25
IF-THEN-ELSE, 25, 26
IMPORT, 41
import, 41, 45, 149
import a symbol, 41, 45, 149
import declaration, 41
import from, 45, 149
import via, 45, 149
index, 90

indicator, 28, 30
infinite precision arithmetic, 36
input/output, 5, 8, 83, 257
input/output module, 83
Integer, 33
Integers, 33, 163
intensional set term, 54, 56
interpretation, 20, 270, 276
Interpreter, 133
IO, 83, 84, 257

l-child, 78, 158
l-child of the first kind, 78, 158
l-child of the second kind, 78, 158
language declaration, 15, 147
language of a module, 20, 48, 151
language of a script, 101
language of a theory, 103
“leftmost literal” computation rule, 11, 66–

68, 133
LIFT, 41
lifting, 43
List, 51
list, 21
List/1, 21
Lists, 22, 51, 183
LOCAL, 41
local declaration, 41
local part, 41
logic component of a program, 3
logical consequence, 20, 272, 277

main module, 48
many-sorted existential closure, 270
many-sorted formula, 270
many-sorted language, 269, 270
many-sorted logic, 15
many-sorted universal closure, 270
meta-programming, 5, 8, 89
model, 20, 272, 276
MODULE, 15, 41
module, 4, 15, 41
module conditions, 45, 147, 149, 150, 154
module declaration, 15
module system, 5, 41
monomorphic symbol, 19
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monotype, 18

n-import, 45, 149
n-redeclare, 45, 149
name, 16
need for pruning, 71
non-ground representation, 11, 124
non-type symbol, 45, 149
nonvar, 10, 12
normal body, 156
normal goal, 156
normal resultant, 156
normal statement, 155
Numbers, 40, 181
NumbersIO, 85, 261

one solution operator, 7
one-solution commit, 72
opaque atom, 91
opaque term, 91
opaque type, 91
open language of a script, 101
open module, 43, 151
operator, 28, 30
overloading, 16, 46
overloading error message, 46

parameter, 18, 272
parametric polymorphism, 5, 15, 18
polymorphic many-sorted formula, 274
polymorphic many-sorted goal, 157
polymorphic many-sorted logic, 18, 269, 272
polymorphic many-sorted program underly-

ing a Gödel program, 157
polymorphic symbol, 19
pre-interpretation, 270, 276
precedence, 28
precedence rule, 29
PREDICATE, 15
predicate, 15
predicate indicator, 30
procedural semantics, 158
procedural semantics of commit, 78
program, 43, 48, 146, 277
program-compile, 98
program-decompile, 98

Programs, 89, 94, 218
ProgramsIO, 98, 265
PROPOSITION, 15, 16
proposition, 15
pruning, 70, 158
pruning disabled, 77
pruning operator, 5, 12
pruning step, 79, 158

range type, 21, 269
Rationals, 36, 167
rectified formula, 270
redeclare a base or constructor, 43
redeclare a type symbol, 45, 149
refer to, 45, 147
relative type, 275
resultant, 92, 94
retract, 10, 12
root, 90
run-time type checking, 21

safe negation, 65
satisfy condition in DELAY declaration, 69, 158
scope of a bar commit, 71
scope of a commit, 76
script, 99
Scripts, 89, 99, 240
ScriptsIO, 102, 266
search tree, 78
Sets, 53, 187
SOME, 23
specifier, 28, 30
standard body, 156
standard form of a rational, 38
standard goal, 156
standard resultant, 156
standard statement, 155
statement, 15, 20, 48, 78, 151, 277
String, 52
Strings, 52, 189
symbol, 15, 44, 149
Syntax, 89, 199
syntax of Gödel, 143
system module, 43, 161

Tableau, 115
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Tables, 58, 192
term, 273
term assignment, 271
term of type τ , 270, 273
term substitution, 90
Theories, 89, 103, 246
TheoriesIO, 105, 267
theory, 154
theory-compile, 104
theory-decompile, 104
ThreeWisemen, 127
token, 143
transparent function declaration, 21, 148
True, 33
truth value, 271
type, 4, 5, 15, 150, 269, 272
type assignment, 18
type lifting, 43
type substitution, 90
type symbol, 45, 149
type system, 15

underscore, 24, 33
unit, 60
Units, 60, 195
use of a name, 46
user-defined module, 43
utility, 161, 268

Vanilla, 124
var, 10, 12
variable, 15
variable assignment, 271
variable typing, 90

WolfGoatCabbage, 110


