
A Self-Applicable Partial Evaluator for the Logic

Programming Language Gödel.
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Abstract

Partial evaluation is a program specialisation technique that has been shown to have great

potential in logic programming, particularly for the specialisation of meta-interpreters by the

so-called “Futamura Projections”. Meta-interpreters and other meta-programs are programs which

use another program as data. In this thesis we describe a partial evaluator for meta-programs in

the logic programming language Gödel.

Gödel is a declarative, general-purpose language which provides a number of higher-level

programming features, including extensive support for meta-programming with a ground

representation. The ground representation is a standard tool in mathematical logic in which object

level variables are represented by ground terms at the meta-level. The ground representation is

receiving increasing recognition as being essential for declarative meta-programming, although the

computational expense that it incurs has largely precluded its use in the past.

This thesis extends the basic techniques of partial evaluation to the facilities of Gödel. Particular

attention is given to the specialisation of the inherent overheads of meta-programs which use a

ground representation and the foundations of a methodology for Gödel meta-programs are laid

down. The soundness of the partial evaluation techniques is proved and these techniques are

incorporated into a declarative partial evaluator.

We describe the implementation and provide termination and correctness proofs for the partial

evaluator SAGE, an automatic program specialiser based upon sound finite unfolding that is able to

specialise any Gödel meta-program (or indeed, any Gödel program at all). A significant illustration

of the success of our techniques for specialising meta-programs which use a ground representation is

provided by the self-application of this partial evaluator. We use the partial evaluator to specialise

itself with respect to a range of meta-programs. By virtue of its self-applicability SAGE has been

used to produce a compiler-generator, which we believe shall prove to be an immensely powerful

and useful tool for meta-programming.
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Chapter 1

Introduction

Partial evaluation is a program specialisation technique that has been shown to have great potential

in logic programming, particularly for the specialisation of meta-interpreters. It was explicitly

introduced into Computer Science by Futamura [20] and into logic programming by Komorowski

[39], for which it was put on a sound theoretical footing by Lloyd and Sheperdson [47]. In the

context of [47] the basic technique for partially evaluating a program P wrt a goal G is to construct

“partial” search trees for P with suitably chosen atoms from G as goals, and then extract the

specialised program P ′ from the definitions associated with the leaves of these trees. A recent

overview and bibliography for partial evaluation are given by [34] and [63] respectively.

The logic programming community’s interest in partial evaluation stems primarily from the first

Futamura projection, which illustrates how partial evaluation may be used to compile programs by

the specialisation of meta-interpreters. The second Futamura projection shows that if the partial

evaluator is self-applicable (able to specialise itself) a compiler may be produced.[18, 33, 35, 62, 67].

This is taken one stage further in the third Futamura projection, where a compiler-generator is

produced by specialising the partial evaluator with respect to itself.

This thesis describes the development of a partial evaluator for meta-programs in the logic pro-

gramming language Gödel [28]. A key aim for this thesis has been the construction of a declarative

self-applicable partial evaluator, written in a logic programming language, which was capable of

specialising any program in the language in which it was written. To date this result has been

achieved in a functional programming language by Neil Jones et al [35] and several attempts have

been made to construct such a program in a logic programming language [18, 19, 51]. However,

these partial evaluators have been constructed in the Prolog language and, due to the non-logical

features of Prolog, have only considered restricted subsets of the language and do not generally

have a declarative semantics. Specialising full Prolog and the construction of an effective (capable

of producing efficient results) self-applicable Prolog partial evaluator are tasks that are made most

difficult by Prolog’s non-logical features. This is illustrated by the sophistication needed to specia-

1
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lise these features.[59, 72]. It is our belief that an effectively self-applicable partial evaluator is an

immensely powerful and useful tool for meta-programming in logic programming.

As a declarative alternative to Prolog, we have chosen to implement our partial evaluator in

Gödel. Gödel is a declarative, general-purpose language which provides a number of higher-level

programming features, including extensive support for meta-programming with a ground repre-

sentation. The ground representation is a standard tool in mathematical logic in which object

level variables are represented by ground terms at the meta-level. The ground representation is

receiving increasing recognition as being essential for declarative meta-programming, although the

computational expense that it incurs has largely precluded its use in the past.

To achieve the above aim we have extended the basic techniques of partial evaluation to the

facilities of Gödel. Particular attention has been given to the specialisation of the inherent overheads

of meta-programs which use a ground representation and to the development of the foundations of

a methodology for Gödel meta-programs.

We may summarise our three main aims as being to:

1. develop techniques to allow the specialisation of the full Gödel language

2. develop an implementation and a methodology for meta-programming with the ground

representation which was

• efficient

• amenable to specialisation

3. design and implement an effectively self-applicable declarative partial evaluator in Gödel.

The layout of this thesis is as follows, in this chapter we discuss the concept of meta-programming

in logic programming. We also introduce the logic programming language Gödel, define the basic

theoretical results underlying partial evaluation and finally discuss the potential for a self-applicable

partial evaluator. In Chapter 2 we describe the techniques employed by the partial evaluator SAGE

to specialise the facilities and features of Gödel, other than Gödel’s meta-programming facilities.

Chapter 3 is dedicated to describing the specialisation of meta-programs in Gödel. In Chapter 4

we examine in more detail the partial evaluator SAGE. We describe its approach to the partial eva-

luation of a program and the assembly of the specialised version of a program. Lastly in Chapter 4

we prove the soundness and termination of SAGE. Finally, in Chapter 5, we present the results

produced by SAGE for the specialisation of a range of meta-programs, including SAGE itself. We

discuss the implications of these results and the scope for further work based upon this founda-

tion. In the appendix we present in more detail the implementation of those parts of the ground

representation relevant to SAGE and the implementation of SAGE.
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1.1 Meta-Programming

A meta-program is essentially any program which uses another program (the object program)

as data. Clearly many of the major applications of logic programming, such as knowledge base

systems, interpreters, compilers, debuggers, program transformers and theorem provers will be

meta-programs.

A key issue for meta-programming is the representation of the object programs, formulas and

terms. Two main approaches to representation have been identified and these are referred to

as the non-ground and ground representations respectively. The key difference between these two

approaches is in the representation of object level variables. In the non-ground representation object

level variables are represented by variables at the meta-level, while in the ground representation

object level variables are represented by ground terms at the meta-level.

The use of a ground representation for meta-programming is a standard tool in mathematical

logic which first appeared in logic programming in [6] and the theoretical foundations for meta-

programming were laid in [27, 26]. In [27] the differences between the non-ground, referred to

in that paper as typed, and the ground representations were discussed and it was shown that the

ground representation is the more powerful of the two. The non-ground representation has severe

semantic problems which make it unlikely that it could be used for any serious meta-programming

in a declarative way. Consequently considerable effort has been devoted to developing Gödel [28],

a declarative logic programming language which provides facilities to support meta-programming

with a ground representation.

Although the ground representation is increasingly being recognised as being essential for decla-

rative meta-programming, the expense that is incurred by the use of such a representation has lar-

gely precluded its use in the past. Using a ground representation means that unification, particularly

the binding of variables (that is, substitutions), must be handled explicitly by the meta-program.

Programmers are unable to rely upon the underlying system to perform unification for them. This

can cause considerable execution overheads in meta-programs. In this thesis we describe the partial

evaluator SAGE (Self-Applicable Gödel partial Evaluator), a Gödel program specialiser which is

capable of optimising Gödel meta-programs so as to remove the majority of these overheads. With

SAGE we are able to produce optimised Gödel meta-programs which can potentially execute in a

time comparable to that of the object programs which they manipulate.
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1.2 Gödel

Gödel is a declarative, general-purpose logic programming language whose main facilities are:

• modules

• types

• control

– constraint solving

– control declarations

– pruning operator

• meta-programming

• input/output

Clearly in this thesis we attach the most importance to the meta-programming facilities that Gödel

provides and Chapter 3 is devoted to the specialisation of these facilities. The specialisation of all

other Gödel facilities must also be taken into account however, and this is discussed in Chapter 2.

In this section we give a brief overview of the above facilities and illustrate with some example

Gödel programs. The example programs and substantial portions of this overview are taken directly

from [28].

1.2.1 Modules and Types

A Gödel module consists of module declarations, language declarations, control declarations, and

statements. Module declarations name modules and declare which symbols of the language are im-

ported and exported. Language declarations define a polymorphic many-sorted language. Control

declarations constrain the computation rule. Statements are the formulas in the language which

define the propositions and predicates. To begin with we shall only deal with the simplest of Gödel

modules, those whose module declaration consists of the keyword MODULE followed by the name of

the module. For example, the following module has name M1.

We now turn to Gödel’s type system before returning to a fuller description of the module

system. Gödel’s type system is based on many-sorted logic with parametric polymorphism [30].

Consider module M1 below which defines the predicates Append and Append3 for appending lists of

days of the week. Note that variables are denoted by identifiers beginning with a lower case letter

and constants by identifiers beginning with an upper case letter.

In general, language declarations begin with the keywords BASE, CONSTRUCTOR, CONSTANT,

FUNCTION, PROPOSITION, or PREDICATE. These declarations declare the symbols of the language,
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MODULE M1.

BASE Day, ListOfDay.

CONSTANT Nil : ListOfDay;

Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday :

Day.

FUNCTION Cons : Day * ListOfDay -> ListOfDay.

PREDICATE Append : ListOfDay * ListOfDay * ListOfDay;

Append3 : ListOfDay * ListOfDay * ListOfDay * ListOfDay.

Append(Nil,x,x).

Append(Cons(u,x),y,Cons(u,z)) <-

Append(x,y,z).

Append3(x,y,z,u) <-

Append(x,y,w) &

Append(w,z,u).

which belong in one of the categories : base, constructor, constant, function, proposition, or pre-

dicate. In module M1, the language declaration beginning with the keyword BASE gives the types

of the many-sorted language of the module. It declares Day and ListOfDay to be bases, which

are the only types of the language. The next three declarations declare the constants, functions,

and predicates of the language. The first part of the CONSTANT declaration declares Nil to be a

constant of type ListOfDay. The second part declares Monday, Tuesday, etc., to be constants of

type Day. The FUNCTION declaration declares Cons to be a binary function which maps a tuple of

arguments, where the first argument is of type Day and the second argument is of type ListOfDay,

to an element of type ListOfDay. The PREDICATE declaration declares Append to be a ternary pre-

dicate each of whose arguments has type ListOfDay. It also declares Append3 to be a quaternary

predicate each of whose arguments has type ListOfDay. Statements and goals are written in the

language defined by the language declarations.

Next we introduce constructors using module M2, which is a variation of module M1. The main

difference between the two modules is that in module M2 a unary constructor List has been declared.

From the base Day and the constructor List, the set of all types of the language is obtained by

forming all “ground terms” from the “constant” Day and the “function” List. Thus the types of

the language are Day, List(Day), List(List(Day)), . . . . Note that a constructor itself is not a
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type.

MODULE M2.

BASE Day.

CONSTRUCTOR List/1.

CONSTANT Nil : List(Day);

Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday :

Day.

FUNCTION Cons : Day * List(Day) -> List(Day).

PREDICATE Append : List(Day) * List(Day) * List(Day);

Append3 : List(Day) * List(Day) * List(Day) * List(Day).

Append(Nil,x,x).

Append(Cons(u,x),y,Cons(u,z)) <-

Append(x,y,z).

Append3(x,y,z,u) <-

Append(x,y,w) &

Append(w,z,u).

Gödel also allows symbols to be defined which have a variety of types. For example, the Append

predicate is normally written so that it can append lists of any type. For this purpose Gödel allows

parameters in language declarations, where a parameter may be instantiated to any type. For

example, in module M3, a is a parameter.

Gödel provides a range of system modules which define the types for a variety of data structures

and the operations upon them. These include, among others, the modules Integers, Lists,

Sets, and Strings. Gödel also provides system modules such as Syntax, Programs and Theories

to support meta-programming and modules such as IO, NumbersIO and ProgramsIO to support

input/output.

We now describe Gödel’s module structure in more detail. In general, modules consist of two

parts, a local part and an export part. The local part of a module contains the code for all the

predicates and propositions declared in that module and language declarations for all symbols which

are only used by that module. The export part of a module contains the language declarations

for those symbols which may be used by another module. A module may use the symbols from

another module by importing that module. A module imports another module by declaring that it
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MODULE M3.

BASE Day, Person.

CONSTRUCTOR List/1.

CONSTANT Nil : List(a);

Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday :

Day;

Fred, Bill, Mary : Person.

FUNCTION Cons : a * List(a) -> List(a).

PREDICATE Append : List(a) * List(a) * List(a);

Append3 : List(a) * List(a) * List(a) * List(a).

Append(Nil,x,x).

Append(Cons(u,x),y,Cons(u,z)) <-

Append(x,y,z).

Append3(x,y,z,u) <-

Append(x,y,w) &

Append(w,z,u).
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imports that module.

For example, the module M5 has a local part which begins with the module declaration LOCAL

and an export part which begins with the module declaration EXPORT. M5 imports the Gödel system

module Lists by means of the import declaration IMPORT Lists. As the system module Lists

declares the predicate Append in its export part, this symbol may be used by the module M5. We

say that this symbol is accessible to module M5. The concept of the accessibility of symbols is

described in more detail in [28].

EXPORT M5.

IMPORT Lists.

BASE Day, Person.

CONSTANT Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday :

Day;

Fred, Bill, Mary : Person.

PREDICATE Append3 : List(a) * List(a) * List(a) * List(a).

LOCAL M5.

Append3(x,y,z,u) <-

Append(x,y,w) &

Append(w,z,u).

There are two other kinds of modules worth mentioning at this point. The first is a module

which consists of a local part only. The local part of such a module will begin with the module

declaration MODULE, as in the modules M1, M2 and M3. The second kind of module is one which has

the module declaration CLOSED instead of EXPORT in its export part. We refer to such a module

as a closed module. Only system modules may be closed. The implications of closed modules for

partial evaluation is discussed in the next chapter.

1.2.2 Control

There are three aspects to control in Gödel: constraints, the computation rule and pruning.
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Gödel has constraint-solving capabilities in the domains of integers and rationals. These are

provided via closed Gödel system modules and therefore their specialisation is dealt with as with

all closed modules. This is described in more detail in the following chapter and we shall not dwell

on it here.

The second aspect of control in Gödel is Gödel’s flexible computation rule for determining

which literal in the current goal will be selected. The computation rule is partly under the control

of the programmer through implicit DELAY declarations, which may be defined for any predicate

in a program. The DELAY declarations specify conditions under which an atom may be selected by

the computation rule and the relevance of this to partial evaluation is discussed in the following

chapter.

The third aspect of control in Gödel is Gödel’s pruning operator, called commit, and this bears

a more detailed overview than the previous two aspects.

The most general form of the Gödel pruning operator has the form {. . .}_n, of which two special

cases have the form | and {. . .}. We refer to the most general form as the full commit and to the

above integer n as the commit label. We begin by explaining the more familiar | commit and then

we discuss the {. . .} commit.

The module P1 defines the predicate Quicksort which is intended to be called with its first

argument instantiated. Module P1 uses the | version of the commit, which we call the bar commit.

Declaratively, | is just conjunction. However, for convenience, if either argument of | is True it

can be omitted, as in the first statement for Quicksort3. Each statement can contain at most one

|. The scope of | is the formula to its left in the body of the statement. The order in which the

statements are tried is not specified, so that commit does not have the sequentiality property of

Prolog’s cut. The procedural meaning of | is that only one solution is found for the formula in its

scope and all other branches arising from the other statements in the definition which contain a

| are pruned. Thus the meaning of | is close to the commit of the concurrent logic programming

languages. Note that, while a | commit would normally appear in every statement of a definition

for which at least one | appears, this is not obligatory.

The Gödel one-solution commit written {. . .}, is used to prune the formula within its scope so

that only one answer for this formula is computed.

The more general form of the commit, the full commit, is not directly supported by Gödel

and is intended mainly to be used in the results of partial evaluation. The need for the full

commit in partial evaluation and the theoretical foundation for it are presented in [47]. In that

paper the partial evaluation theorem of [29] is extended to cover programs containing commits.

In Section 2.3 we present this extension to the partial evaluation theorem and describe in detail

SAGE’s specialisation of Gödel’s commit operator.
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MODULE P1.

IMPORT Lists.

PREDICATE Quicksort : List(Integer) * List(Integer).

DELAY Quicksort(x,_) UNTIL NONVAR(x).

Quicksort(x,y) <-

Quicksort3(x,y,[]).

PREDICATE Quicksort3 : List(Integer) * List(Integer) * List(Integer).

DELAY Quicksort3(x,_,_) UNTIL NONVAR(x).

Quicksort3([],xs,xs) <-

|.

Quicksort3([x|xs],ys,zs) <-

|

Partition(xs,x,l,b) &

Quicksort3(l,ys,[x|ys1]) &

Quicksort3(b,ys1,zs).

PREDICATE Partition : List(Integer) * Integer * List(Integer) * List(Integer).

DELAY Partition([],_,_,_) UNTIL TRUE;

Partition([u|_],y,_,_) UNTIL NONVAR(u) & NONVAR(y).

Partition([],_,[],[]) <-

|.

Partition([x|xs],y,[x|ls],bs) <-

x =< y |

Partition(xs,y,ls,bs).

Partition([x|xs],y,ls,[x|bs]) <-

x > y |

Partition(xs,y,ls,bs).
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1.2.3 Meta-Programming

Gödel provides a ground representation for meta-programming which enables users to write meta-

programs that:

• Have a declarative semantics.

• Are clearly readable and straightforward to write.

• Are potentially comparable, in execution time, to Prolog meta-programs which use the non-

ground representation.

Gödel’s ground representation is presented to the user via an abstract data type, thus avoiding

the need for the user to have knowledge of its implementation and therefore not confusing the

user with a profusion of constant and function symbols. In addition to this, the development of

large meta-programming applications such as interpreters, theorem provers, partial evaluators and

debuggers in Gödel have influenced the development of Gödel’s ground representation, so that a

natural and clearly readable style of meta-programming with the ground representation is now

emerging. This is exemplified by the comparison between the ‘naive’ Gödel meta-interpreter in

figure 3.4, where unification and resolution are handled explicitly in the code, and the more natural

meta-interpreter of figure 3.3, where resolution is handled implicitly by the Gödel system predicate

Resolve, discussed in more detail in Section 3.3.1. Other example meta-programs may be seen in

Section 5.1.1.

The partial evaluator SAGE is designed primarily to specialise Gödel meta-programs and the-

refore a detailed overview of meta-programming in Gödel and SAGE’s approach to specialising

meta-programs is provided in Chapter 3.

The development of SAGE has progressed concurrently with the development of Gödel and so

SAGE has been both influenced by and has influenced upon the Gödel language, most notably in the

implementation of the ground representation. What has been produced is an implementation of the

representation of substitutions and the operations upon them, for example unification, composition,

application and resolution, which is designed in such a way that it should be both efficient and

capable of being specialised, by a program specialiser such as SAGE, in order to produce significantly

more efficient residual code. This implementation of the representation of substitutions and the

operations upon them was originally developed as a part of the implementation of SAGE and

has since been incorporated into the implementation of Gödel’s ground representation so that all

Gödel meta-programs might take advantage of the efficiences of this implementation. Details of

this implementation are presented in Appendix A.
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1.3 Partial Evaluation

The program specialisation technique that we use is partial evaluation1, a specialisation technique

that has been shown to have great potential, particularly in functional and in logic programming [4,

9, 19, 37, 60, 64, 69, 72]. It was first explicitly introduced into computer science by Futamura [20]

and into logic programming by Komorowski [39]. A recent overview and bibliography for partial

evaluation are given by [63] and [34] respectively.

The main specialisation techniques employed by most logic programming partial evaluators are

folding and unfolding [37, 60, 63, 69]. Partial evaluation based upon finite unfolding was put on

a firm theoretical basis in [47]. In this section we shall repeat from [47] the definitions and the

main theorem that we need to prove the soundness of the partial evaluation techniques utilised by

SAGE.

A concept that will be needed in the definition of partial evaluation is that of a resultant, which

we now define.

Definition A resultant is a first order formula of the form Q1 ← Q2, where Qi is either absent

or a conjunction of literals (i = 1, 2). Any variables in Q1 or Q2 are assumed to be universally

quantified at the front of the resultant.

Definition Let P be a normal program, G a normal goal ←Q, and G0 = G,G1, . . . , Gn an

SLDNF-derivation of P ∪ {G}, where the sequence of substitutions is θ1, . . . , θn and Gn is ←Qn.

Let θ be the restriction of θ1 . . . θn to the variables in G. Then we say the derivation has length n

with computed answer θ and resultant Qθ ← Qn. (If n=0, the resultant is Q← Q.)

Next we give the definition of a partial evaluation of a normal program wrt a set of atoms.

Definition Let P be a normal program, A an atom, and T an SLDNF-tree for P ∪{← A}. Let

G1, . . . , Gr be (non-root) goals in T chosen so that each non-failing branch of T contains exactly

one of them. Let Ri (i = 1, . . . , r) be the resultant of the derivation from ←A down to Gi given

by the branch leading to Gi. Then the set of clauses R1, . . . , Rr is called a partial evaluation of A

in P .

If A = {A1, . . . , As} is a finite set of atoms, then a partial evaluation of A in P is the union of

partial evaluations of A1, . . . , As in P .

A partial evaluation of P wrt A is a normal program obtained from P by replacing the set of

clauses in P whose head contains one of the predicate symbols appearing in A (called the partially

evaluated predicates) by a partial evaluation of A in P .

A partial evaluation of P wrt A using SLD-trees is a partial evaluation of P wrt A in which all

1Also referred to as partial deduction.
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the SLDNF-trees used for the partial evaluation are actually SLD-trees (i.e., no negation as failure

steps are allowed during the partial evaluation process).

Next we provide definitions for the preconditions that must be met for the partial evaluation

theorem.

Definition Let A be a finite set of atoms. We say A is independent if no pair of atoms in A

have a common instance.

Definition Let S be a set of first order formulas and A a finite set of atoms. We say S is

A-closed if each atom in S containing a predicate symbol occurring in an atom in A is an instance

of an atom in A.

Definition Let P be a normal program and G a normal goal. We say G depends upon a

predicate p in P if there is a path from a predicate in G to p in the dependency graph for P .

Definition Let P be a normal program, G a normal goal, A a finite set of atoms, P ′ a partial

evaluation of P wrt A, and P ∗ the subprogram of P ′ consisting of the definitions of predicates in

P ′ upon which G depends. We say P ′ ∪ {G} is A-covered if P ∗ ∪ {G} is A-closed.

Finally we present the partial evaluation theorem relevant to the SAGE partial evaluator. This

theorem originally appeared as Theorem 4.3 of [47].

Theorem 1.3.1 Let P be a normal program, G a normal goal, A a finite, independent set of

atoms, and P ′ a partial evaluation of P wrt A such that P ′∪{G} is A-covered. Then the following

hold.

(i) P ′ ∪ {G} has an SLDNF-refutation with computed answer θ iff P ∪ {G} does.

(ii) P ′ ∪ {G} has a finitely failed SLDNF-tree iff P ∪ {G} does.

1.4 Self-Application

The logic programming community’s interest in partial evaluation stems primarily from the first

Futamura projection [20], which illustrates how partial evaluation may be used to compile programs

by the specialisation of meta-interpreters. The second Futamura projection shows that if the partial

evaluator is self-applicable (able to specialise itself) a compiler may be produced [18, 33, 35, 62, 67].

This is taken one stage further in the third Futamura projection, where a compiler-generator is

produced by specialising the partial evaluator with respect to itself. We argue that in order for the

second and third Futamura projections to be achieved what is needed is a partial evaluator that is

capable of producing efficient code upon the specialisation of general meta-programs.
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1.4.1 Specialising Meta-Programs: The Three Futamura Projections

Perhaps the best-known example of the specialisation of a meta-program is that of the first

Futamura projection, where an interpreter is specialised with respect to a particular object program

in order to produce a ‘compiled’ version of that program. Here, as the specialised interpreter is

a program that emulates the object program, it can be considered to be a version of the object

program compiled into the language in which the interpreter is written.

Definition The First Futamura Projection.

PE(I, P ) = IP

That is to say, the partial evaluation of interpreter I with respect to the program P produces

IP . This is a specialised form of the interpreter which is capable of interpreting P with increased

efficiency.

It could be the case that, for example, the interpreter simulates the execution of queries with

respect to some program utilising a computation rule that differs from that of the underlying system.

The extra expense that the ground representation imposes upon the execution of these queries can

be largely removed by partial evaluation and we will be left with a version of the interpreter that

executes the object program, utilising the control rule of the interpreter, in a time comparable to

that of executing the original object program directly.

Suppose we wished to specialise some interpreter as above, with respect to a range of object

programs, so as to produce compiled versions of a number of programs. In specialising the interpre-

ter we would be removing the overheads of the ground representation in that meta-program, but

the actual process of such a specialisation, performed by a partial evaluator, would itself suffer from

these overheads. Here we see that we are continually performing a partial evaluation of the same

meta-program (the interpreter) with respect to different queries (the different object programs).

The obvious next step is to specialise the process of partially evaluating the interpreter. This will

produce a version of the partial evaluator that is, through the removal of the expense of the ground

representation, capable of specialising the interpreter in a time comparable to that of executing

(the evaluable parts of) the interpreter directly. This process is known as the second Futamura

projection, and the specialised version of the partial evaluator so produced, can be considered to be

a compiler as the results it computes are compiled code in the sense of the first Futamura projection.

Definition The Second Futamura Projection.

PE(PE, I) = PEI

PEI(P ) = IP

Here the specialisation of the partial evaluator PE with respect to interpreter I produces the

compiler PEI .
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To achieve the second Futamura projection we need the partial evaluator to be capable of

specialising itself. The partial evaluator therefore needs to be able to specialise programs in the

language in which it is written. We refer to this ability as self-applicability. However, it is not

sufficient for a partial evaluator merely to be able to specialise itself, as we must also be certain

that the partial evaluator will produce efficient results upon self-application. By efficient results we

mean to say that the residual program produced, by applying the partial evaluator to itself, must

have a significantly faster execution time compared to the original partial evaluator for equivalent

queries. If, after self-application, the residual program is not significantly improved over the original

program then there can have been little point in performing the partial evaluation. We refer to a

partial evaluator that is capable of producing efficient results upon self-application, as an effective

self-applicable partial evaluator.

Ultimately our aim is to specialise the partial evaluator with respect to itself. This is known as

the third Futamura projection and the program produced is a compiler-generator.

Definition The Third Futamura Projection.

PE(PE,PE) = PEPE

PEPE(I) = PEI

Here, the specialised partial evaluator generated by the third Futamura projection is used to

generate a compiler, by specialising the partial evaluator with respect to an interpreter (i.e. per-

forming the second Futamura projection).

1.4.2 What is a Compiler-Generator?

A compiler-generator is a meta-program which is, by the third Futamura projection, automatically

generated by partially evaluating a partial evaluator with respect to itself. A compiler generator

may be used to produce compilers by the specialisation of meta-interpreters. These compilers may

be used to specialise the interpreters they embody, with respect to object programs, to produce

compiled programs.

The three Futamura projections illustrate primarily the specialisation of meta-interpreters.

However, this concept can easily be extended to encompass all meta-programs, as all meta-programs

may be described as being interpreters in one form or another. With this generalisation we see

that the first Futamura projection describes the specialisation of a general meta-program with

respect to the representation of a program. In the second Futamura projection we specialise a spe-

cific meta-program, the partial evaluator itself, with respect to some, general, meta-program. The

second Futamura projection is thus simply one instance of the first Futamura projection. Similarly

the third Futamura projection, where we specialise the partial evaluator with respect to itself, is

simply one instance of the second, and thus of the first, Futamura projection.
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To reiterate:

• Specialising meta-programs is the first Futamura projection

• One application of this is the second Futamura projection

• One application of the second Futamura projection is the third Futamura projection

The compiler-generator is simply a tool for achieving our major aim of specialising meta-programs

in a more efficient manner.

With this argument we see that the crucial step is to satisfactorily achieve the first Futamura

projection. That is, to produce a partial evaluator that is capable of effectively specialising any

meta-program in the language in which it is written. Once this goal is achieved then the second

and third Futamura projections, and thus the generation of a compiler-generator, are natural

consequences.

Although the third Futamura projection is a natural consequence of effectively achieving the

first Futamura projection this in no way diminishes the importance of a compiler-generator as a tool

for meta-programming. Suppose that, for example, a Gödel programmer develops a meta-program,

MP say, which he/she wishes to use for a range of applications (that is, object programs). The

meta-program MP suffers considerably from the expense of Gödel’s ground representation and so

the programmer would wish to specialise MP with respect to the various object programs in order

to remove this inefficiency.

The programmer could perform this specialisation of MP by a call to SAGE(MP,P), for each

object program P. However, the same results could be achieved in a greatly reduced time by utilising

the compiler SAGEMP , produced by specialising SAGE to MP, to perform the same task. Thus the

Gödel programmer, having developed MP, would wish firstly to produce the compiler SAGEMP

so that he/she could set about specialising MP to its various applications.

SAGEMP could be produced by a call to SAGE(SAGE,MP). However, when we consider the

development of an entire family of meta-programs, then it would be as easy, and much faster, to

use the compiler-generator SAGESAGE to automatically produce a compiler from any given meta-

program. Thus we see that the compiler-generator, while not ultimately producing any results that

we could not achieve by considering the first Futamura projection only, is an immensely useful aid

in speeding up the development of efficient meta-programs.

To conclude, the automatic generation of a compiler-generation by the third Futamura

projection is a major achievement for two reasons. Firstly, a compiler-generator is a tremendously

powerful and useful tool, allowing as it does far greater efficiency in the automatic application

of the first and second Futamura projections. Secondly, the automatic generation, by the third

Futamura projection, of a compiler-generator serves as perhaps the most significant test case in
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proving that a partial evaluator successfully achieves the first Futamura projection, the specialisa-

tion of general meta-programs.



Chapter 2

Specialising Gödel Programs

In this chapter we present the techniques employed by SAGE for specialising the various facilities

of Gödel, apart from the meta-programming facilities which we leave to the next chapter. Although

SAGE is a partial evaluator for Gödel programs, certain of the facilities Gödel provides may be

found in other languages also. The techniques described below are therefore applicable to a wider

range of languages than just Gödel.

2.1 Connectives, Quantifiers and Conditionals

Gödel allows for the use of arbitrary formulas in the bodies of statements and goals. In Gödel,

conjunction is denoted by &, disjunction by \/, negation by ~, (left) implication by <-, (right)

implication by ->, and equivalence by <->. The universal quantifier is denoted by ALL and the

existential quantifier is denoted by SOME. Each quantifier has two arguments, the first being a list

of the quantified variables and the second the scope of the quantifier.

2.1.1 Connectives

Unfolding formulas of the form A <- B, A -> B, and A <-> B is handled simply by transforming

them to the forms A \/ ~B, ~A \/ B and (A & B) \/ (~A & ~B), respectively. Disjunctions may

be unfolded to produce two resultants, one for each of the disjuncts. For example, the disjunc-

tion in the resultant H <- A & (B \/ C) & D can be unfolded to produce the two new resultants

H <- A & B & D and H <- A & C & D.

Naturally, the unrestricted unfolding of disjunctions in the above manner can potentially lead to

code explosion and redundant computation in the residual code. In Section 3.4 we discuss SAGE’s

approach to these problems.

18
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Input:

a program P

a negative formula ~F

Output:

F ∗, the specialisation of ~F

Initialisation

Vars := {v0, . . . , vn}, the set of free variables in F

R := partial evaluation of F wrt P

If R = ∅

Then % F has finitely failed

F ∗ = True

Else

R = {R0, . . . , Rm}

i = 0, . . . ,m,Bi := {v = t : v is bound to t in computing Ri}

i = 0, . . . ,m, F ′
i := B′

i & Ri, where B′
i = the conjunction of the set of atoms Bi

If for some i, F ′
i = True

Then % F has safely succeeded

F ∗ = False

Else % residual code for ~F

F ∗ = ~F ′
0
&. . . & ~F ′

m

Figure 2.1: Constructive Unfolding of Negation

2.1.2 Negation

Figure 2.1 illustrates the algorithm employed by SAGE to unfold negated formulas. This

algorithm is based upon the concept of constructive negation [13]. First a partial evaluation of

the formula that has been negated is computed. If there are no residual resultants for this partial

evaluation then the formula has failed finitely and the negation has therefore succeeded. If at

least one of residual resultants has an empty body and has not bound any variables in the original

formula then the negation fails safely, otherwise the negations of these resultant bodies and the

bindings they compute are conjoined to produce a specialised version of the negation.

2.1.3 Quantifiers

When SAGE renames variables in the representations of Gödel formulas, by using either

RenameFormulas, StandardiseFormulas or ResolveAll, existentially quantified variables are ren-
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amed so as to have names different from all other variables in the formula. Consequently SAGE

may generally ignore existential quantifiers, as the names of the quantified variables are guaranteed

not to occur outside the scope of the quantifier. The cases where we are interested in knowing

whether variables are free or quantified, in negated formulas for example, are dealt with by the

unfolding strategy for those particular cases.

Universally quantified formulas such as ALL [x,y] P(x,y,z), are transformed to the form

~(SOME [x,y] ~P(x,y,z)).

2.1.4 Conditionals

When specialising conditionals in Gödel we need only to consider the IF-THEN-ELSE construct,

as formulas of the form IF Condition THEN Formula may be transformed to IF Condition THEN

Formula ELSE True.

The first form of the IF-THEN-ELSE construct is

IF Condition THEN Formula1 ELSE Formula2

and Figure 2.2 illustrates the algorithm employed to specialise a formula of this form. First a partial

evaluation of Condition is computed. If there are no residual resultants for this partial evaluation

then Condition has failed finitely and the conditional is replaced by Formula2, which may subse-

quently be

specialised further. Alternatively the specialised version of Condition will be the disjunction of

all the residual resultant bodies of this partial evaluation and the bindings they compute. If any of

these disjuncts is an empty formula then, in at least one case, Condition has terminated successfully

and bound no free variables. In this case we may replace the conditional with the conjunction of

the specialised Condition and Formula1, which may subsequently be specialised further. Otherwise

the specialisation of Condition has not indicated whether Condition will succeed or fail and so

Formula1 and Formula2 are both partially evaluated and a new conditional is constructed in which

Conditional, Formula1 and Formula2 are replaced by their specialised versions.

The second form of the IF-THEN-ELSE construct is

IF SOME [x1, . . . , xn] Condition THEN Formula1 ELSE Formula2

and a specialisation of this second form of the IF-THEN-ELSE construct is performed in much the

same manner as for the first form, the only difference being the treatment of variables bound in the

specialisation of Condition. If the specialisation indicates that Condition has failed finitely, then

the conditional is replaced by Formula2 as before. If this is not the case then we construct the

specialised conditional C∗ as before, but we consider only the free variables of the formula ∃V C∗,

where V is the list of variables [x1, . . . , xn], when determining whether any free variables have
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Input:

a program P

a conditional formula F = IF C THEN T ELSE E

Output:

F ∗, the specialisation of F

Initialisation

Vars := {v0, . . . , vn}, the set of free variables in C

RC := partial evaluation of C wrt P

If RC = ∅

Then % C has finitely failed

F ∗ = the partial evaluation of E

Else

RC = {R0, . . . , Rm}

i = 0, . . . ,m,Bi := {v = t : v is bound to t in computing Ri}

i = 0, . . . ,m, C ′
i := B′

i & Ri, where B′
i = the conjunction of the set of atoms Bi

C∗ = C ′
0
\/. . . \/ C ′

m

If for some i, C ′
i = True

Then % C has safely succeeded

F ∗ = the partial evaluation of C∗ & T

Else % residual code for F

RT := partial evaluation of T wrt P

RE := partial evaluation of E wrt P

construct T ∗ and E∗ from RT and RE respectively

(T ∗ and E∗ are constructed as C∗ is constructed from RC above)

F ∗ = IF C∗ THEN T ∗ ELSE E∗

Figure 2.2: Unfolding IF-THEN-ELSE
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been bound in C∗. If C∗ cannot be safely determined to have either failed or succeeded then a new

conditional is constructed as before, although using IfSomeThenElse rather than IfThenElse.

2.2 Type Declarations

Gödel provides a type system based on a parametric many-sorted logic. In this type system we

may declare polymorphic symbols, such as the declaration for the Append predicate:

PREDICATE Append : List(a) * List(a) * List(a).

Here, a is a parameter which can be instantiated to any type of the language of the logic.

To ensure that Gödel goals may be run with no run-time type checking Gödel imposes two

conditions on the type declarations for Gödel programs. The first of these is the head condition

which is as follows:

• A statement satisfies the head condition if the tuple of types of the arguments of the head in

the statement is a variant of the type declared for the predicate in the head.

The head condition is the one aspect of Gödel’s type system that SAGE particularly needs to

concern itself with. In partially evaluating an atom whose predicate symbol has a polymorphic

declaration it is perfectly possible for arguments in the heads of residual statements to become

sufficiently instantiated to require a specialisation of the predicate declaration.

For example, partially evaluating the atom Append([1],[],z) leads to the new statement

Append([1],[],[1]). With this statement, the above declaration for Append no longer satisfies

the head condition and would need to be replaced by the new declaration:

PREDICATE Append : List(Integer) * List(Integer) * List(Integer).

This specialisation of polymorphic predicate declarations is performed at the point at which SAGE

uses the specialised code and the original program to construct the specialised program. This is

discussed in more detail in Section 4.4.

2.3 Control

There are two aspects to control in Gödel that are considered by SAGE. The first of these is the

computation rule. The second is Gödel’s pruning operator which determines those subtrees that

will be pruned from the search tree. We examine the specialisation of each of these in turn.
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2.3.1 Computation Rule

Gödel supports a flexible computation rule by means of DELAY declarations, which may appear

either in user-defined or system modules. In general we would expect that the DELAY declarations

for a program should be sufficient to ensure that the computation of some goal will not proceed at

any point in the execution of some query with respect to this program, unless that goal is sufficiently

instantiated to ensure that the computation will behave correctly and will terminate.

In partial evaluation we generally assume that we are specialising a program with respect

to a particular class of queries. That class is usually represented by some partially instantiated

query for this program. Our aim is to perform as much computation as possible, based upon

the partial knowledge that we have of the queries which the specialised program is intended to

answer. Consequently, when performing a partial evaluation we would generally expect to be

specialising goals which are only partially instantiated and will therefore be unlikely to satisfy any

DELAY declarations. To insist that the partial evaluation of some partially instantiated query with

respect to some program respected the DELAY declarations for that program will generally prove

unacceptably prohibitive to the partial evaluation process. There seems therefore to be little value

in examining the DELAY declarations during partial evaluation.

Although SAGE pays no attention to DELAY declarations when computing partial evaluations,

when constructing the specialised program it is possible that certain declarations may have to

be updated to match specialised predicate declarations. This issue is discussed in more detail in

Chapter 4.4.

2.3.2 Pruning

Gödel provides a pruning operator, commit, which we introduced in Section 1.2. In [29] Hill et

al provide a more detailed description of the commit and prove that, while naturally affecting

completeness, it is a sound operator for logic programming.

It is also shown in [29] that, provided two conditions are met, the computational equivalence of

a program and its partial evaluation wrt a given goal (that is, [47, theorem 4.3]) can be extended to

encompass programs containing commits. These conditions are restrictions on the structure of the

SLDNF-trees used to obtain the partial evaluation and are referred to as the freeness and regularity

conditions.

In this section we shall show that, while the freeness condition is acceptable, the regularity

condition imposes restrictions on the computation of partial evaluations which are both expensive

to enforce and lead to a significant reduction in the amount of specialisation that may be performed.

We present the technique implemented by SAGE to avoid the need for the regularity condition and

prove the correctness of this technique for partial evaluation. To enable this proof we first repeat
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from [29] the formal definitions of freeness and regularity and the extended partial evaluation

theorem.

Definitions for the Commit

The definitions of a c-program, c-program clause and c-goal naturally extend the usual definitions

for programs, program clauses and goals by allowing commits within formulas.

Definition Let P be a normal c-program and G a normal c-goal. A cSLDNF-tree for P ∪ {G}

is a tree satisfying the following conditions.

1. Each node of the tree is a (possibly empty) normal c-goal.

2. The root node is G.

3. Suppose ← Q is a non-leaf node. Then a literal, say L, is selected in Q and either

(a) L is an atom,

A1 ← M1

...

Ar ← Mr

is the set of (standardised apart) c-program clauses such that L and Aj unify with mgu

θj (1 ≤ j ≤ r), {M ′
1
, . . . ,M ′

r} is the set obtained from {M1, . . . ,Mr} by replacing each

commit label in {M1, . . . ,Mr} by a label not in ← Q such that if l and m are commit

labels replaced by l′ and m′, respectively, then l = m iff l′ = m′, and

← Q1θ1
...

← Qrθr

are the r children of the node ← Q, where Qj is obtained from Q by replacing the

selected atom in Q by M ′
j and removing any empty commits (1 ≤ j ≤ r), or

(b) L is a ground negative literal ¬A and there is a finitely failed SLDNF-tree forP−∪{← A},

where P− is the normal program underlying P . In this case, there is only one child

← Q1, where Q1 is obtained from Q by removing the selected literal ¬A and removing

any empty commits. The associated substitution is the identity substitution.

4. Suppose ← Q is a leaf node. Then either

(a) Q is empty, in which case the node ← Q is said to be empty, or
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(b) Q is non-empty and there is a selected literal L, and either

i. L is an atom and there is no c-program clause (variant) in P whose head unifies

with L, or

ii. L is a ground negative literal ¬A and there is an SLDNF-refutation of P−∪{← A},

where P− is the normal program underlying P ,

in which case the node ← Q is said to be failed, or

(c) Q is non-empty and no literal is selected, in which case the node ← Q is said to be

incomplete.

A complete cSLDNF-tree is a cSLDNF-tree with no incomplete leaf nodes. If the cSLDNF-tree

for P ∪ {G} consists of just the incomplete leaf node G, we say it is trivial. Otherwise, we say it is

non-trivial. We say a branch in a cSLDNF-tree is a success branch if it ends in an empty leaf node

and a failed branch if it ends in a failed leaf node. A subtree of a cSLDNF-tree is said to be failed

if every leaf node of the subtree is failed.

Definition Let T be a cSLDNF-tree, G0 a non-leaf node in T , and G1 a child of G0. Then G1

is an l-child of G0 if either

1. G0 contains a commit labelled l and the selected literal in G0 is in the scope of this commit,

or

2. G1 is derived from G0 using as input clause a c-program clause containing a commit labelled

l (after standardisation apart of the commit labels).

We say that G1 is an l-child of the first kind (resp., of the second kind) if G0 satisfies condition 1

(resp., 2) above.

Definition Let S be a subtree of a cSLDNF-tree. We say that the tree S′ is obtained from S

by a pruning step in S at G0 if the following conditions are satisfied.

1. S has a node G0 with distinct l-children G1 and G2, and there is an l-free node G′
2
in S which

is either equal to or below G2.

2. S′ is obtained from S by removing the subtree of S rooted at G1.

We say that G1 is the cut node, the pair (G2, G
′
2
) is an explanation for the pruning step and that

G′
2
has pruned the subtree rooted at G1.

Definition A subtree S of a cSLDNF-tree is said to be prunable if there is a pruning step in

S which can be applied at a node in S. Otherwise, S is said to be unprunable.
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Definition Let T be a cSLDNF-tree and S a pruned subtree of T . We say that S is regular

if, for each node in S with more than one child in S, the selected literal is in the scope of all the

commits at that node.

Note that by this definition, if S is regular, then any non-root node in S with an l-commit is

either the only child or an l-child of its parent node.

Definition Let T be a cSLDNF-tree and S a pruned subtree of T . We say that R is a

c-resultant for S if R is the c-resultant of a branch in S which ends at a non-failed leaf node.

If T is an SLDNF-tree and R is the resultant of a branch in T which ends at a non-failed leaf node,

then we call R a resultant for T .

Definition Let P be a normal c-program, A an atom, and T a finite, non-trivial cSLDNF-tree

for P ∪ {← A} such that, if the selected literal at a node ← Q is an atom, then the commit labels

in the matching clauses are standardised apart not only wrt the labels in ← Q but also all normal

c-goals in T which are not descendants of ← Q. Let S be a pruned subtree of T and {R1, . . . , Rr}

the set of all the c-resultants for S. Then the set {R1, . . . , Rr} of normal c-program clauses is called

a partial evaluation of A in P .

The partial evaluation is said to be regular if S is regular. The partial evaluation is said to be

prunable (resp., unprunable) if the subtree of S obtained by removing all failed branches is prunable

(resp., unprunable). The partial evaluation is said to be free if S = T .

The following theorem extends the partial evaluation theorem, Theorem 1.3.1, to c-programs.

This theorem appeared as Theorem 3.2 in [29].

Theorem 2.3.1 Let P be a normal c-program, G a normal c-goal, A a finite, independent set

of atoms, and P ′ a partial evaluation of P wrt A such that P ′ ∪ {G} is A-closed. If the partial

evaluation is free and regular, and S′ is a pruned subtree of a cSLDNF-tree T ′ for P ′ ∪ {G}, then

there is a pruned subtree S of a cSLDNF-tree T for P ∪ {G} which has the same set of c-computed

answers as S′.

The above theorem states that the partial evaluation should be A-closed. In Theorem 1.3.1 this

condition was replaced with the less restrictive condition that the partial evaluation be A-covered.

The extension of the above theorem is relatively straightforward. Note that this theorem states

only that for any potential pruning step in a partially evaluated program an equivalent pruning step

may be applied to the original program. No assumptions are made that the strategy employed to

construct the partially evaluated program will guarantee that equivalent pruning steps are actually

applied in both the original and partially evaluated programs, only that they exist.
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Freeness of SAGE Partial Evaluations

The freeness condition says that we are not permitted to perform pruning during a partial evalua-

tion. The following example shows that without this condition, we cannot guarantee the soundness

of the partially evaluated program with respect to the original program.

Example Let P be the normal c-program

P(A) <- {Q}_1.

P(B) <- {Q}_1.

Q.

G the normal c-goal <- ~P(A), and A = {P(x)}. Then the normal c-program P ′

P(B).

can be obtained by a non-free partial evaluation of P wrt A. However, the identity substitution is

a c-computed answer for P ′ ∪ {G}, but not for P ∪ {G}.

It should be noted that there is one case in which we might permit a partial evaluation to perform

pruning. If we can guarantee that performing a pruning step will only prune failing computations

then we might allow that pruning step to proceed.

For example, suppose that during a partial evaluation the atom AnalyseTerm(T ) were unfolded,

where the definition of AnalyseTerm is:

AnalyseTerm(term) <-

Variable(term) |

AnalyseVariable(term).

AnalyseTerm(term) <-

ConstantTerm(term, name) |

AnalyseConstant(term).

AnalyseTerm(term) <-

FunctionTerm(term, name, args) |

AnalyseFunctionTerm(term).

If the term T were instantiated to some ground term, then we may guarantee that at most one

of the three statements above will succeed. Therefore, once we have determined which of the

three atoms Variable(T ), ConstantTerm(T ,name) and FunctionTerm(T ,name,args) succeeds

we may prune the other two branches in the cSLDNF-tree. Naturally we would only be able

to perform this pruning step in the case where the arguments of the committed formula were

sufficiently instantiated for us to determine which of the branches is the correct one. If the term T

were a variable for example, we would not be able to correctly perform a pruning step.

There is one version of SAGE which allows the user to state prior to performing a partial

evaluation whether freeness should be enforced or not. Note that allowing pruning (by not enforcing
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freeness) is purely an efficiency measure and is not permitted in general, as the soundness of the

results may be affected. SAGE will enforce freeness by default in order to ensure soundness in

the general case and it is expected that the freeness condition will be enforced for the majority of

partial evaluations.

Regularity of SAGE Partial Evaluations

The regularity condition says that, in a partial evaluation, SAGE should only select literals that

are in the scope of all commits occurring in the current resultant. The following example illustrates

the need for this condition.

Example Let P be the normal c-program

P(x) <- {Q(x)}_1 & R(x).

P(C) <- {True}_1.

R(A).

R(B).

Q(x).

G the normal c-goal <- P(x) and A = {P(x)}. Using the cSLDNF-tree T0

<-P(x)

�
�

�
��✠

❅
❅
❅
❅❅❘

<- {Q(x)} 1 & R(x) <- {True} 1

�
�

�
��✠

❅
❅
❅
❅❅❘

<- {Q(A)} 1 <- {Q(B)} 1

we obtain a partial evaluation P ′ of P wrt A such that P ′ ∪ {G} is A-closed and the definition of

P in P ′ is

P(A) <- {Q(A)}_1.

P(B) <- {Q(B)}_1.

P(C) <- {True}_1.
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The partial evaluation is free, but not regular. There is a cSLDNF-tree T1

<-P(x)

✟✟✟✟✟✟✟✟✟✙

❍❍❍❍❍❍❍❍❍❥❄

� �

✷

x/C

<- {Q(B)} 1<- {Q(A)} 1

❄ ❄
✷ ✷

x/A x/B

for P ′ ∪ {G} that can be pruned to have just the c-computed answer {x/A}. There is, however,

no tree for P ∪ {G} which can be pruned to have just the answer {x/A}. We denote the subtree

removed by a pruning step by placing a ‘cut-line’ across the branch leading to the cut node.

Regularity is an extremely strong condition which places firm restrictions on the amount of

unfolding permitted for most committed programs. An examination of almost any program con-

taining commits (for example the Quicksort program defined by module P1 in Section 1.2 or any

of the meta-programs presented in Section 5.1) will demonstrate that to restrict unfolding in a

partial evaluation to only those literals which appear in the scope of all commits in a resultant will

generally be unacceptably restrictive. In addition, restricting the selection strategy of a partial eva-

luator to satisfy the regularity condition is potentially very expensive in computational terms. In

order to decide for which literals in a resultant the regularity condition is satisfied requires explicit

knowledge of the scopes of all commits in each resultant. Therefore we have found it necessary

to develop a technique for unfolding formulas containing commits which permits us to disregard

regularity while ensuring the correctness of the partial evaluations.

To justify our solution to this problem we must first understand exactly how it has occurred.

In the tree T0 we have performed two unfolding steps. We first unfolded the root node <- P(x) to

produce two new nodes, each of which is a 1-child (of the second kind) of the root node. We next

unfolded the node, <- {Q(x)} 1 & R(x) to produce two children. However, as the selected atom

in that node, R(x), is outside the scope of the commit, the two children of not 1-children of it. We

refer to the first unfolding step in T0 as a regular unfolding step and to the second as an irregular

unfolding step.

Definition Let T be a cSLDNF tree and N a non-leaf node in T . If the children of N are

l-children, for some commit label l, we say that we have performed a regular unfolding step at N

in T . Otherwise we say that we have performed an irregular unfolding step at N in T . When the
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cSLDNF-tree may be inferred from the context we shall say simply that an unfolding step is regular

(respectively, irregular).

From the first condition of the definition of a pruning step we see that a cSLDNF-tree S′ may

be obtained from a cSLDNF-tree S by a pruning step at some node G iff we have performed a

regular unfolding step at G in S. This point is crucial to understanding where the problem in the

above example arises.

Let T2 be the cSLDNF-tree for P ∪ {G} which is a natural extension for the above tree T0

<-P(x)

�
�

�
��✠

❅
❅
❅
❅❅❘

�

<- {Q(x)} 1 & R(x) ✷

x/C�
�

�
��✠

❅
❅
❅
❅❅❘

<- {Q(A)} 1 <- {Q(B)} 1

❄ ❄
✷ ✷

x/A x/B

Ignoring pruning for the moment we see that the leaf-nodes of T2 are equivalent to those of

T1, as we would expect. The crucial difference between these two trees is that while in T1 we may

perform two pruning steps to leave just the c-computed answer {x/A}, we may not do this in T2.

In T2 we may only prune at the root node where we have performed a regular unfolding step. At

the node <- {Q(x)} 1 & R(x) in T0 we performed an irregular unfolding step which gave rise to

the two distinct leaf nodes. The problem with the tree T1 arises because the information that the

two nodes <- {Q(A)} 1 and <- {Q(B)} 1 were produced by an irregular unfolding step, and thus

may not prune each other, has been lost.

We may solve this problem by introducing a new commit label to rename apart the commits in

the nodes <- {Q(A)} 1 and <- {Q(B)} 1 to prevent them from pruning each other. From this we

can see that a specialised definition for the predicate P could be:

P(A) <- {Q(A)}_1.

P(B) <- {Q(B)}_2.

P(C) <- {{True}_1}_2.
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Let P ∗ be the program P with the above definition for predicate P replacing that of P . Then

the cSLDNF-tree T3

<-P(x)

✟✟✟✟✟✟✟✟✟✙

❍❍❍❍❍❍❍❍❍❥❄

�

✷

x/C

<- {Q(A)} 1 <- {Q(B)} 2

❄ ❄
✷ ✷

x/A x/B

for P ∗ ∪ {G} is correct wrt T2, in the sense that for any pruning step in T2 there is a pruning step

in T3 which prunes the equivalent nodes and vice versa.

SAGE ’s Approach to the Relabelling of Commits

When unfolding a formula which contains a committed subformula, SAGE will perform the spe-

cialisation of the committed subformula as a self-contained sub-computation. Having specialised a

committed formula, SAGE will not attempt to perform any more unfolding upon any residual lite-

rals within the scope of the specialised committed formula. This means that the unfolding of such

a formula has three stages. Firstly a number of unfolding steps are performed outside the scope

of the commit. Secondly the committed subformula is unfolded and finally a number of unfolding

steps are performed outside the scope of the commit once again. For example, when specialising

a formula of the form A & {B & C} & D SAGE will perform the specialisation of the formula {B

& C} as a self-contained sub-computation. Assuming, for example, that SAGE used an exclusively

left-to-right selection strategy, it would thus specialise the formulas A, followed by {B & C} and

finally D.

A more general approach which allows unrestricted unfolding (either regular, irregular or any

combination thereof) is possible and is a relatively straightforward extension of the techniques de-

scribed below. However, the restricted approach described here is sufficient to adequately specialise

most reasonable cases and so for the sake of simplicity we do not consider the most general case in

this thesis.
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We illustrate the implementation of the above relabelling of commits by SAGE with the following

example. Given the program:

P(x) <- {Q(x,y)}_1 & R(y).

P(x) <- {True}_1 & S(x).

P(x) <- {T(x)}_1 & U(x).

R(x) <- V(x).

R(x) <- W(x).

S(A).

S(B).

T(C).

T(D).

the cSLDNF-tree used to compute the partial evaluation (ignoring relabelling of commit labels) of

the atom P(x) with respect to this program, where it was not permitted to unfold atoms with the

predicates Q, U, V or W, is:

← P(x)
✟✟✟✟✟✟✟✟✟✙

❍❍❍❍❍❍❍❍❍❥❄

← {Q(x, y)}1&R(y) ← {True}1&S(x) ← {T(x)}1&U(x)
✟✟✟✟✟✟✟✟✟✙ ❄

✁
✁

✁
✁
✁☛

❆
❆
❆
❆
❆❯ ❄

❍❍❍❍❍❍❍❍❍❥
← {Q(x, y)}1&V(y)← {Q(x, y)}1&W(y) ← {True}1 ← {True}1 ← {True}1&U(C) ← {True}1&U(D)

leaving us the six residual statements:

1. P(x) <- {Q(x,y)}_1 & V(y).

2. P(x) <- {Q(x,y)}_1 & W(y).

3. P(A) <- {True}_1.

4. P(B) <- {True}_1.

5. P(C) <- {True}_1 & U(C).

6. P(D) <- {True}_1 & U(D).

Consider firstly just the statements 1–4. Statements 1 and 2 were produced by unfolding the

formula ← {Q(x, y)}1&R(y) outside the scope of the commit and thus they must not be allowed to

prune each other, although they will each prune the statements 3 and 4. Statements 3 and 4 were

similarly produced by unfolding ← {True}1&S(x) outside the scope of the commit and thus they

also will not prune each other, although they will both prune 1 and 2.

To implement the above restrictions on pruning SAGE augments the label of each commit in

a resultant by an extra integer value when that commit is first introduced. In the above example
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the commit with label 1 is introduced in the nodes ← {Q(x, y)}1&R(y), ← {True}1&S(x) and

← {T(x)}1&U(x). We therefore record the commit labels for these three nodes as 11, 12 and 13

respectively. For statements 1–4 these augmented labels are copied from the parent node to the

relevant child. Thus the augmented labels for the statements 1–4 are 11, 11, 12 and 12 respectively.

We can see therefore that pruning will be performed correctly for the four statements 1–4 if we

follow the rule that when committing to a statement with augmented commit label ni, we prune

precisely those other statements with augmented commit label nj , such that i 6= j.

When we consider also the two statements 5 and 6 the situation becomes a little more complex

and we must augment the commit labels further to deal with this correctly. Statements 5 and 6

were produced by unfolding within the scope of the commit and thus they will each prune all other

statements, including each other. The following table indicates, for each new statement, which

other statements should be pruned if we commit to that statement.

Statement Prunes Statements

1 3, 4, 5, 6

2 3, 4, 5, 6

3 1, 2, 5, 6

4 1, 2, 5, 6

5 1, 2, 3, 4, 6

6 1, 2, 3, 4, 5

As we have unfolded the goal← {T(x)}1&U(x) within the scope of the commit we cannot simply

copy this node’s augmented commit label, 13, to the two children of this node. Instead we must

add an entirely new augmented commit label at this point. We add a new integer pair m : i to

each child, where m is some new integer value and i is used to enumerate the children. Thus the

new augmented commit labels for the statements 5 and 6 will be 12:1
3

and 12:2
3

respectively. Note

that we have used here the integer 2 as the new integer value m, as 2 is an integer of greater value

than the label of any other commits in the above cSLDNF-tree, the only other commit label being

1 in this case.

To ensure that the augmented commit labels all have the same format we may assume that

the augmented labels initially introduced (11, 12 and 13) are syntactic sugar for the more complex

augmented commit labels 10:0
1

, 10:0
2

and 10:0
3

. The rule that we must apply when committing

to a statement with these more complex augmented commit labels is that when committing to

a statement with augmented commit label nj:k
i , we prune precisely those other statements with

augmented commit labels nm:p
l such that (l 6= i) ∨ (m = j ∧ p 6= k).

Following the above process for augmenting commit labels we see that the augmented commit

labels for the above statements 1–6 will be 10:0
1

, 10:0
1

, 10:0
2

, 10:0
2

, 12:1
3

and 12:2
3

respectively. Following

the above pruning rule we see that we have satisfied the necessary pruning in the above table.
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Step 1: Unfold A to produce i new
resultants with commit label n

H← . . .&A& . . .
✟✟✟✟✟✟✟✟✟✙

❍❍❍❍❍❍❍❍❍❥❄

Step 2: Specialise each resultant outside
commit, producing j new resultants

H← . . .&{Ai}n& . . .
✟✟✟✟✟✟✟✟✟✙

❍❍❍❍❍❍❍❍❍❥❄

...

resultant 1 . . . . . . resultant i

Step 3: Specialise each resultant inside
commit, producing k new resultants

H← . . .&{Ai}n& . . .
✟✟✟✟✟✟✟✟✟✙

❍❍❍❍❍❍❍❍❍❥❄

...

resultant 1 . . . . . . resultant j

Step 4: Specialise each resultant outside
commit, producing l residual statements

H← . . .&{A∗
i
}n&. . .

✟✟✟✟✟✟✟✟✟✙

❍❍❍❍❍❍❍❍❍❥❄

...

resultant 1 . . . . . . resultant k

H← . . . . . .resultant 1 . . . . . . resultant l

Figure 2.3: A Generalised Irregular cSLDNF-tree

Having performed a partial evaluation SAGE is able to analyse the augmented commit labels for

the residual resultants and compute a matrix of new Gödel commit labels for each new statement

which preserves the soundness of pruning with respect to the original program. This avoids the

need to enforce regularity while performing the partial evaluation. For the above example SAGE

will give the following new definition for the predicate P:

P(x) <- {{Q(x,y)}_1}_2 & V(y).

P(x) <- {{Q(x,y)}_3}_4 & W(y).

P(A) <- {{True}_1}_3.

P(B) <- {{True}_2}_4.

P(C) <- {{{{True}_1}_2}_3}_4 & U(C).

P(D) <- {{{{True}_1}_2}_3}_4 & U(D).

The tree in Figure 2.3 illustrates the generalisation of unfolding with our approach. Note that

the only nodes in this tree which have n-children are the root node and all nodes which appear in

the tree after step 2 but before step 3. All n-children of the root node are n-children of the second

kind and all children of nodes which appear after step 2 but before step 3 are n-children of the

first kind. We shall make use of this information when we prove the correctness of a pruning step
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performed wrt the augmented commit labels.

In general, a commit label will be introduced into a partial evaluation in i resultants. For each

resultant containing a commit, SAGE will unfold outside the scope of this commit to produce j new

resultants, for some j. The committed formula in each of these new resultants may be unfolded

to produce k residual committed formulas, for some k. A resultant constructed by replacing the

original committed formula by the specialised formula may then be unfolded outside the scope of

the specialised committed formula to produce l resultants, for some l.

We next show that the augmented commit labels created for the resultants in the tree in

Figure 2.3 capture the necessary information concerning the branches used in deriving those resul-

tants. At the first step we unfold an atom A in a resultant, introducing i new resultants containing

a committed formula with label n. The commits in these resultants are labelled as n0:0
1

, . . . , n0:0i

respectively.

For example, consider the (partial) program:

P(x) <- {Q(x,y)}_1 & R(y).

P(x) <- {Q(x,y)}_1 & S(x).

Q(x,y) <- Q1(x,y).

Q(x,y) <- Q2(x,y).

R(x) <- R1(x).

R(x) <- R2(x).

S(A).

and the following cSLDNF-tree T1 for this program

<-P(x)

�
�

�
��✠

❅
❅
❅
❅❅❘

<- {Q(x,y)} 1 & R(y) <- {Q(x,y)} 1 & S(y)

we have (step 1) unfolded the atom P(x) to produce two 1-children. The augmented labels for

these two distinct nodes will be 10:0
1

and 10:0
2

respectively. Using the notation that ni is syntactic

sugar for n0:0i we may see that the augmented pruning rule “ni prunes nj whenever i 6= j” is correct

in this case.

At the second step each of these i new resultants are specialised outside the scope of the commit,

producing j1, . . . , ji new resultants respectively. The augmented commit labels for each of these

new resultants will be identical to that of the ancestor resultant produced by step 1. If we were to

extend the above cSLDNF-tree by step 2 to give the tree T2
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< −P(x)
✟✟✟✟✟✟✟✟✟✙

❍❍❍❍❍❍❍❍❍❥
<- {Q(x,y)} 1 & R(y) <- {Q(x,y)} 1 & S(y)

�
�

�
��✠

❅
❅
❅
❅❅❘ ❄

<- {Q(x,A)} 1<- {Q(x,y)} 1 & R2(y)<- {Q(x,y)} 1 & R1(y)

then the augmented labels (in shortened form) for the three leaf nodes of this tree, from left to

right, will be 11, 11 and 12. Again we may see that this is correct with respect to our new pruning

rule. As we have performed an irregular unfolding step, we do not want the branches which have

a common ancestor in the leaf nodes of T1 (that is, the nodes produced after step 1) to prune each

other, but we do want branches which had a distinct ancestor after step 1 to prune each other.

To illustrate the third step we consider just one of the resultants produced from the previous

step, with augmented commit label n0:0a , say. In the third step we specialise the committed formula

in this resultant to produce k new resultants. The augmented commit labels for these new resultants

will be nm:1
a , . . . , nm:k

a respectively, where m is some new integer value.

After the second step there were ja resultants with augmented label n0:0a . For each of these

resultants we ensure that a distinct value for m is used in the above augmenting of labels following

step 3. For example, following step 3 two resultants would have the augmented commit labels nm1:b
a

and nm2:c
a respectively, for some b and c. If the ancestors of these two resultants (produced after

step 2) were distinct then the values of m1 and m2 would be different. If these two resultants were

produced from the same ancestor by step 3, then the values of m1 and m2 would be equal.

For example, consider the leaf node of T2, <- {Q(x,y)}1 & R1(y). We may unfold this node

within the scope of the commit to produce the subtree

< −{Q(x, y)} 1&R1(y)

�
�

�
��✠

❅
❅
❅
❅❅❘

<- {Q1(x,y)} 1 & R1(y) <- {Q2(x,y)} 1 & R1(y)

We have performed here a second regular unfolding step. The two leaf nodes of this tree should

prune each other in addition to any branches which their parent node would have pruned. Assuming

that the integer value 2 was greater than any other value appearing as a commit label in the current
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computation, the augmented labels for the leaf nodes of the above subtree would be n2:1
1

and n2:2
1

respectively. We must add the new integer pairs 2 : 1 and 2 : 2 to the augmented labels for these

nodes to distinguish them from any new augmented labels for nodes below the node <- {Q(x,y)}1

& R2(y) in T2 which may also be introduced by step 3.

At the fourth and final step each resultant produced by the third step is specialised outside the

scope of the commit to produce, say, l new resultants. The augmented commit labels for each of

these new resultants will be identical to that of the ancestor resultant which was produced by step

3. Again we may see that this is correct with respect to our new pruning rule, that two distinct

resultants with identical augmented labels nf :p
a should not prune one another.

Correctness of SAGE ’s Unfolding of Commits

Suppose that T is a cSLDNF-tree of the form of Figure 2.3 for a program P and that P ′ is a partial

evaluation of P constructed using the leaf nodes of T . In order to prove the correctness of pruning

in P ′ wrt P we must show that all of the information relevant to the application of a pruning step

in T is captured in the augmented labels used to rename the commits in P ′.

Consider, for the sake of simplicity, a cSLDNF-tree of the form of Figure 2.3 with a root node

← A, where A is some atom. This tree is a truncated version of the cSLDNF-tree T ′ used to

compute answers for P ∪ {← A}. We may restore T to T ′ by adding the relevant subtrees of T ′

to the leaf nodes of T . We may refer to this as the extension of T . If we take the node ← A

and perform one unfolding step wrt P ′ we see that we have a tree of depth 2 whose leaf-nodes are

equivalent to the leaf nodes of T . We may therefore extend this tree by the (renamed) subtrees

used to extend T . In this way we can construct a tree T ∗ for P ′ which is equivalent to T ′.

When we perform a pruning step in the tree T ′ we will have a cut node and an explanation for

this step. The cut node and the first node in the explanation may both appear in the tree T and

will therefore not appear in the tree T ∗. Theorem 2.3.2 proves that the information concerning

these nodes is captured by our augmented commit labels. Before we present this theorem we must

formalise the notion of extension.

Definition Let T be a cSLDNF-tree with leaf nodes N1, . . . , Nn, S the set of subtrees Si, for

i = 1, . . . , n, such that Si is rooted at Ni and T ′ the tree formed by adding, for i = 1, . . . , n, the

subtree Si to the leaf node Ni of T . We say that T ′ is the extension of T by S.

Definition Let P be a c-program, A an atom, T a cSLDNF-tree for P ∪ {A}, P ′ the partial

evaluation of A, S a set of subtrees, T ′ the extension of T by S and T (A) the cSLDNF-tree for

P ′ of depth two with root node ← A. If S’ is the set obtained from S by renaming variables and

commits such that they match the corresponding leaf-nodes of T (A) and T ∗ is the extension of

T (A) by S’ then we say that T ∗ is the extension of P ′ wrt T and S.
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Theorem 2.3.2 Let P be a normal c-program, G a normal c-goal, A a finite, independent set

of atoms and P ′ a free partial evaluation of P wrt A such that P ′∪{G} is A-closed and constructed

with a (possibly) irregular cSLDNF-tree of the form in Figure 2.3. If S′ is a pruned subtree of a

cSLDNF-tree T ′ for P ′ ∪ {G} then there is a pruned subtree S of a cSLDNF-tree T for P ∪ {G}

which has the same set of c-computed answers as S′.

Proof We consider the case where A consists of the single atom A and our partial evaluation

unfolds A to introduce a single new commit with label n. The extension to the more general case

is straightforward. We shall also ignore branches arising from the unfolding of A which do not

contain a commit as these are trivial cases for which Theorem 1.3.1 is sufficient.

Let T ∗ be cSLDNF-tree used to construct the partial evaluation of A, T the extension of T ∗ by

some set S, T ′ the extension of P ′ wrt T ∗ and S, B1 and B2 leaf nodes of T and B′
1
and B′

2
the

equivalent leaf-nodes of T ′.

We prove the equivalence of the set of c-computed answers for S and S′ by proving that there is

a pruning step in T with cut node G1 and explanation (G2, B2) such that B1 is below G1 iff there

is a pruning step in T ′ with cut node G′
1
and explanation (G′

2
, B′

2
) such that B′

1
is below G′

1
.

If part:

If we may perform a pruning step in T at a node G0 with cut node G1 and explanation (G2, B2)

such that B1 is below G1 then G1 and G2 are distinct n-children of G0.

There is a trivial case where G0 is a node which is in T but not in T ∗. G0 is therefore a node in

some subtree in S. By the definition of extension there will therefore be an equivalent node G′
0
in

T ′ at which we may perform an equivalent pruning step with cut node G′
1
and explanation (G′

2
, B′

2
)

such that B′
1
is below G′

1
.

The non-trivial case is when G0 is in T ∗. There are two possibilities, either that G0 is the root

node, ← A, or that G0 is a node produced after step 2 but before step 3.

If G0 is the root node ← A then the augmented commit labels nf :p
a for all sub-nodes of G1 are

such that a 6= b for all augmented commit labels ng:q
b of sub-nodes of G2. By the rule for pruning

with augmented labels there is therefore a pruning step at the root node in T ′ with cut node G′
1

and explanation (G′
2
, B′

2
) such that B′

1
is below G′

1
.

If G0 is a node produced after step 2 then the augmented labels for the nodes G1 and G2 are n
f :p
a

and nf :q
a respectively. As G1 and G2 are distinct, p 6= q. By the rule for pruning with augmented

labels there is therefore a pruning step at the root node in T ′ with cut node G′
1
and explanation

(G′
2
, B′

2
) such that B′

1
is below G′

1
.

Only-if part:

If we may perform a pruning step in T ′ at a node G′
0
with cut node G′

1
and explanation (G′

2
, B′

2
)

such that B′
1
is below G′

1
then G′

1
and G′

2
then either G′

0
is the root node, ← A, or G′

0
is a node

below ← A. This latter case is equivalent to the trivial case for the if-part above and there is
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therefore an equivalent node G0 in a subtree in S and we may perform the necessary pruning step

at this node.

In the first case there are distinct leaf nodes in T ∗, equivalent to G′
1
and G′

2
, with augmented

commit labels nf :p
a and ng:q

b such that either a 6= b or f = g and p 6= q.

If a 6= b then these leaf nodes in T ∗ have ancestors G1 and G2 which are distinct n-children of

the root node ← A. We may therefore perform the necessary pruning step in T at ← A.

If f = g and p 6= q then these leaf nodes in T ∗ have distinct ancestors G1 and G2 which are

n-children of some node G0 produced after step 2 but before step 3. We may therefore perform the

necessary pruning step in T at the node G0.

Finally in this section we briefly discuss the impact of the above theorem. Examination of

almost any program containing commits will demonstrate that to restrict partial evaluation so that

unfolding of any formula is only permitted within the scope of all commits in that formula would

limit partial evaluation so severely as to make it of very little value as a program specialisation

technique. Thus it was essential that to make partial evaluation a useful technique for Gödel

programs it was necessary to remove the regularity condition from the partial evaluation theorem

for programs with commits (Theorem 2.3.1).

In Theorem 2.3.2 we have weakened, but not removed, the regularity condition. In this we have

sought only to prove the correctness of SAGE ’s handling of the unfolding of formulas containing

commits. We comment that removing the regularity condition completely would be possible by an

extension of the techniques described above, leading to a strengthening of the above theorem. This

is a result we expect to see verified in the near future.

2.4 Open and Closed Code

Gödel provides a module structure which we discuss in Section 2.6. However, there is one aspect

of Gödel modules which we must introduce at this point.

In general, Gödel modules consist of two parts, an export part and a local part. The local part

of a module consists of the code that defines the predicates declared in that module. The local

part may also contain the declarations of the symbols which are used locally in that module. The

export part of a module contains the declarations for those symbols which may be used by any

other module which imports this module.

The particular feature of the module structure which we introduce here is concerned with the

export part of modules. In general a Gödel meta-program would expect to be able to access the

definition of any predicate defined in a module of some object program. The Gödel predicate

DefinitionInProgram is used for this purpose. However, modules in a program may be of one of

two kinds. The first kind of modules are modules which have been written by some Gödel user and
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are referred to as user-defined modules. The second kind of modules are those which are provided

by the Gödel system and these are referred to as system modules. In certain of the system modules

the export part defines the module to be closed. A closed module is used to hide the details of

the implementation of certain of the Gödel system modules, as a meta-program is unable to access

the definition of a predicate with a call to DefinitionInProgram if that predicate is defined in the

local part of a closed module. Any module which is not closed is an open module.

All code in a Gödel program falls into one of two categories, which we refer to as open and

closed. We define the open code of a Gödel program to be that code which is either defined in a

user-defined module of the program or which is defined in an open system module. We define all

code that is defined in a closed Gödel system module as being closed code.

To unfold a call to an atom whose definition is open, SAGE uses the Gödel system predicates

DefinitionInProgram and ResolveAll to obtain this definition and use it to perform a single re-

solution step upon this atom. SAGE uses the Gödel system predicate DeclaredInClosedModule to

detect atoms which are declared in closed modules and calls the Gödel system predicate ComputeAll

to unfold these calls as far as possible.

2.5 Input/Output

Gödels’ input/output facilities are supported by closed system modules and hence consist of closed

code in the above sense. We repeat from [28] the motivation for the intended use of input/output

in Gödel programs.

Gödel’s input/output facilities do not have a declarative semantics, so it is very important

that input/output predicates are confined to as small a part of a program as possible. Let us say

a module is an input/output module if it depends upon the module IO. Then the key idea is to

have the input/output modules as high as possible, preferably at the top, of the module hierarchy

of a program. This means that most of the modules in such a program will not depend on the

input/output modules and can be understood declaratively (together possibly with some commits).

Fortunately, it is usual for the input/output modules to be near the top of the module hierarchy

of a program. In fact, a common module structure is to have just the main module of a program

importing the system input/output modules. In this case, all the other modules in the program

have a declarative semantics. Furthermore, there is a strong incentive for programmers to adopt

this kind of module structure, since it is only the modules that are not input/output ones to which

the purest forms of program transformation, declarative debugging, and so on, apply. Given that

programmers utilise such a module structure, it is expected that SAGE will generally be used to

specialise the declarative core, that is to say, the non-input/output modules, of any program.

In fact SAGE is capable of processing calls to input/output predicates where necessary. As
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the system modules that provide input/output predicates are closed modules the definitions of

these predicates consist of closed code, in the sense of Section 2.4 above. Consequently, if SAGE

encounters a call with some input/output predicate which is sufficiently instantiated to be executed,

then it will interpret the execution of this call with a call to ComputeAll. If a call with some

input/output predicate is encountered which is not sufficiently instantiated to be executed then

ComputeAll will return this to SAGE as a delayed call.

2.6 Modules

The usual software engineering advantages of a module system are well known and apply equally

well to Gödel. In its most basic form, a module system simply provides a way of writing large

programs so that various pieces of the program do not interfere with one another because of name

clashes and also provides a way of hiding implementation details. The Gödel module system is

based on these standard ideas. When we partially evaluate a program however, it is often almost

impossible to retain more than the barest semblance of the original program’s module structure.

Consider the module DB which imports the module People. We could partially evaluate the

atom Human(x) to produce the three new statements Human(Bill), Human(Fred) and Human(Mary).

The constant symbols Bill, Fred and Mary are not accessible to the module DB and so we are unable

to both replace the definition of the predicate Human in DB with the above three statements and

retain the original module declarations for People. We could overcome the declaration problem in

this case by requiring that the specialised version of the module People exported all symbols that

it declared. When we force a module to export all of the symbols that it declares in this manner

we say that we are causing this module to promote all of its symbols. However, allowing a partial

evaluator to alter a program so that each module promotes all of its declared symbols is still not

sufficient in general, as the next example illustrates.

Consider the module Both which imports the module Member. We could partially

evaluate the atom InBoth(x,Cons(A,Nil),y) to produce the new statement defining InBoth,

InBoth(A,Cons(A,Nil),y) <- Member(A,y), and a new definition for the predicate

Member, which will consist of the two specialised statements Member(A,Cons(A,y)) and

Member(A,Cons(u,y)) <- Member(A,y). Here we have introduced into the specialised definition

of the predicate Member a constant symbol, A, which is declared in a module that is not imported

by the module Member. In the previous example we were able to overcome the problem caused by

partial evaluation by promoting the symbols in the imported modules. In this case however, the

constant symbol A is declared in the module Both and forcing Both to promote A will still not make

this symbol accessible to the module Member. What has occurred in this case is a demotion of the

constant symbol A. That is to say, the constant symbol A has now appeared in a module which was
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MODULE DB.

IMPORT People.

PREDICATE Human : Person.

Human(x) <-

Male(x).

Human(x) <-

Female(x).

EXPORT People.

BASE Person.

PREDICATE Male : Person;

Female : Person.

LOCAL People.

CONSTANT Bill, Fred, Mary : Person.

Male(Bill).

Male(Fred).

Female(Mary).
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originally imported by the module in which A was declared.

MODULE Both.

IMPORT Member.

BASE Data.

CONSTANT A, B, C : Data.

PREDICATE InBoth : a * List(a) * List(a).

InBoth(x,y,z) <-

Member(x,y) &

Member(x,z).

EXPORT Member.

CONSTRUCTOR List/1.

CONSTANT Nil : List(a).

FUNCTION Cons : a * List(a) -> List(a).

PREDICATE Member : a * List(a).

LOCAL Member.

Member(x,Cons(x,y).

Member(x,Cons(u,y) <-

Member(x,y).

What occurs in general in the partial evaluation of a Gödel program is a flattening of the module

structure of that program. That is to say, the symbols declared in any program module may be

either promoted or demoted so that they might appear in any other module of the program. This

flattening will generally compress the program in a manner which makes it extremely difficult to
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retain any sensible semblance of the module structure of the original program. In the worst case

it is quite conceivable that a partial evaluation would flatten a program to such an extent that

the entire module structure of the program would be lost and the specialised code for the residual

program would need to be declared in a single large module. Consequently SAGE does not make

any attempt to preserve the module structure of a program after specialisation and all residual

programs are constructed as if they were essentially defined by a single residual module.

Gödel provides support for this flattening of Gödel programs via the concept of a script. A script

is essentially a Gödel program from which all module structure has been removed. The system

module Scripts supports a binary predicate ProgramToScript that converts the representation of

a Gödel program to a Gödel script. A script, based upon some program, has a closed part and an

open part. The closed part of a script consists of the language declarations, control declarations

and code which appeared in the local parts of the closed modules in the original program. The

open part of the script contains the complement of the closed part. It can be seen therefore that

the code contained in the open and closed parts of the script will be, respectively, closed and open

code, in the sense of Section 2.4. The module Scripts provides support for modifying the open

part of a script only, as it is only the open code of a program which a Gödel meta-program is able

to modify.

Meta-programs may access terms representing scripts by the use of the system module

ScriptsIO, which supports predicates for reading and writing the representation of a script to

and from a file. Lastly, Gödel provides facilities for viewing the representation of a script and

converting the representation of a script to an executable program.

Removing the module structure of a program by constructing its partial evaluation as a script is

not as drastic a measure as it may seem, if we assume that the module structure is provided primarily

for software engineering purposes. Here the module structure is a useful aid to the programmer

when writing and debugging the original program. It seems safe to assume that a program will only

be partially evaluated once it is complete and (hopefully) bug-free. In this case the user needs only

to be certain that the answers computed by the partially evaluated program are correct with respect

to the original program and he/she is unlikely to be concerned with the structure of the specialised

program. In fact, taking the widely accepted view that partial evaluation may be considered as a

part of the compilation process for a program, the above argument is perfectly acceptable. All that

programmers will generally require from the compilation of their programs is that the compiled

version of a program should be correct with respect to the original program.



Chapter 3

Specialising Gödel Meta-Programs

In this chapter we turn to what is probably the most important of all Gödel’s facilities, the gro-

und representation. The ground representation is certainly the most important facility for a self-

applicable partial evaluator such as SAGE. Firstly, SAGE is a meta-program and therefore requires

the ground representation for its implementation. Secondly, in order to be effectively self-applicable

SAGE must be capable of specialising all of the Gödel facilities that it itself employs. Naturally

then it follows that SAGE needs to be able to specialise Gödel meta-programs. As the ground

representation is almost certainly the major cause of computational expense in any meta-program,

it follows therefore that efficiently specialising the ground representation is of paramount impor-

tance for SAGE.

In this chapter we discuss the major causes for the expense of the ground representation.

In terms of these major causes we then discuss the implementation and specialisation of the

ground representation and describe a methodology for Gödel meta-programs that allows them

to be effectively specialised by SAGE.

3.1 The Ground Representation in Gödel

As described in the previous chapter, the main facilities provided by the Gödel language are types,

modules, control (in the form of constraint solving, control declarations and a pruning operator),

meta-programming and input/output. This means that Gödel, being a rich and expressive lan-

guage, has a complex syntax. As Gödel’s ground representation is intended to be sufficient to

represent Gödel programs it must allow for the construction of terms of sufficient complexity to de-

scribe arbitrary formulas and Gödel’s types, modules, control, meta-programming and input/output

facilities. The current implementation of the ground representation [7] requires some 75 constants

and function symbols to construct the terms necessary to adequately represent the entire Gödel

language. If all of these symbols were visible in Gödel meta-programs, it would be necessary for

45
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VarsInTerm(term,vars) <-

VarsInTerm1(term,[],vars).

VarsInTerm1(term,vars,[term|vars]) <-

Variable(term).

VarsInTerm1(term,vars,vars) <-

ConstantTerm(term,name).

VarsInTerm1(term,vars,vars1) <-

FunctionTerm(term,name,args) &

VarsInTerm2(args,vars,vars1).

VarsInTerm2([],vars,vars).

VarsInTerm2([term|rest],vars,vars1) <-

VarsInTerm1(term,vars,vars2) &

VarsInTerm2(rest,vars2,vars1).

Figure 3.1: Gödel code for VarsInTerm

the user to be familiar with the entire representation and competent in the manipulation of all of

these symbols before he/she would be competent in the writing of meta-programs. To avoid con-

fronting the user with such complexity unnecessarily, in Gödel, the representations of object level

expressions and programs are treated as abstract data types. This also has the added advantage

that meta-programs are independent of any specific implementation of the ground representation.

Example Figure 3.1 gives the Gödel code for finding the variables in an object level term. The

predicates Variable, ConstantTerm and FunctionTerm are provided by Gödel. The first argument

to such predicates are, respectively, the representations of object level variables, constants, and

terms with a function at the top level.

The ground representation is an extremely powerful tool for meta-programming. However,

it has the disadvantage of considerably increasing computation time. For example, consider an

interpreter that computes the answer for some object program and query, using SLDNF-resolution.

In the current implementation of Gödel, such an interpreter will run at 100–200 times slower than

executing the program and query directly.

There are two major contributory factors to the expense of the ground representation in Gödel.

The first is a direct result of supporting the ground representation as an abstract data type. The

second, and potentially more serious, factor is that when using the ground representation the process

of unification must be performed explicitly. However, the expense incurred by both of these factors
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has been overcome by specialising meta-programs with respect to particular object programs. We

discuss the above two factors, and their solutions, in more detail in the following two sections.

3.2 Specialising the Representation of Gödel

The major disadvantage of supporting the ground representation as an abstract data type is that

we pay a price for not making visible those constants and function symbols used by the ground

representation. Consider the predicate VarsInTerm1 in Figure 3.1, which has three statements in

its definition. In each statement the first argument (which is the key argument) in the head of the

statement is a variable. As such, no implementation of Gödel would be capable of differentiating

between the three statements at the time of procedure entry. Thus a choicepoint would need to

be created and the execution time of the above code is increased by the time taken to create

this choicepoint and also by any necessary backtracking. The use of choicepoints will also inhibit

garbage collection. As meta-programs using the ground representation often process some very

large terms (for example, the representation of SAGE is a Gödel term of approximately 1MByte in

size), garbage collection is very important. Any impairment to the efficiency of garbage collection

will potentially cause a serious increase in the memory-usage of a meta-program. We need therefore

to prevent the creation of these superfluous choicepoints.

Ideally we would like to be able to perform some form of indexing upon the first arguments to

VarsInTerm1. If the constants and function symbols used in Gödel’s representation were accessible

to the user, rather than hidden by the abstract data type, we would be able to use these symbols in

the definition of VarsInTerms1 and thus could perform first argument indexing upon this predicate.

Such indexing would prevent the need for the creation of choicepoints and all the attendant expense.

In our experience, meta-programs which are written without access to the symbols in the ground

representation currently run up to three times slower than equivalent programs that do have access

to the ground representation. Fortunately, through program specialisation, it is possible for a

meta-program written without access to the symbols in the ground representation to achieve the

efficiency of one that has. The use of partial evaluation to remove the overheads of abstract data

types has also been proposed by Komorowksi [40].

In Gödel’s representation, variables are represented by a term Var(v,n), where v is a string

and n an integer (this representation for variables is described in more detail below); constant

terms are represented by a term CTerm(name), where name is a Gödel term representing the name

of this constant; function terms are represented by a term Term(name,args), where name is the

representation of the name of this function term and args is the list of representations of its

arguments.

We may specialise the Gödel code in Figure 3.1, even without further knowledge of the values
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VarsInTerm1(Var(v,n),vars,[Var(v,n)|vars]).

VarsInTerm1(CTerm(name),vars,vars).

VarsInTerm1(Term(name,args),vars,vars1) <-

VarsInTerm2(args,vars,vars1).

Figure 3.2: Specialised code for VarsInTerm1(term,vars,vars1)

of any arguments. The first atom in the body of each statement in the definition of VarsInTerm1

may be unfolded. The result of this will be to make visible the relevant function symbols in

Gödel’s ground representation. Figure 3.2 illustrates the specialised code for VarsInTerm1. As

the relevant function symbols representing variables, constant and function terms now appear in

the first argument of the heads of the statements defining VarsInTerm1, the Gödel system may

perform first argument indexing to differentiate between the three statements. Consequently, when

a call is made to VarsInTerm1 with the first argument instantiated, no choicepoints are created

and no backtracking is necessary at any point in the computation. When such specialisations are

performed upon an entire meta-program the resulting gains in efficiency are considerable.

SAGE is capable of performing an automatic specialisation of the code in Figure 3.1. The

residual code will leave the definitions of the predicates VarsInTerm and VarsInTerm2 unchanged,

and replace the definition of VarsInTerm1 with the code in Figure 3.2.

3.3 Specialising Resolution in the Ground Representation

The greatest expense incurred by the use of the ground representation occurs in the manipulation

of substitutions. When any variable binding is made, this must be explicitly recorded. Thus any

unification, and similarly the composition and application of substitutions, must be performed

explicitly. This produces significant overheads in the manipulation of the representations of terms

and formulas. In this section we discuss how this expense may be greatly reduced, potentially

leading to a specialised form of unification that is comparable to the WAM code [2, 76] for the

object program. The need to specialise an explicit unification algorithm for efficiency has also been

investigated in [16, 41]. Specialising meta-interpreters for propositional logic to produce WAM-like

code has been investigated in [54].

In meta-programming the main manipulations of substitutions occur during resolution or unfol-

ding, where we must unify an atom in some goal with a statement in the object program. Figure 3.3

gives the main part of a very simple Gödel meta-interpreter for definite programs. It is in the third

statement of this program that we see the Gödel predicate Resolve being used to resolve an atom

in the current goal with respect to a statement selected from the object program.
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Solve(program, goal, v, v, subst, subst) <-

EmptyFormula(goal).

Solve(program, goal, v_in, v_out, subst_in, subst_out) <-

And(left, right, goal) &

Solve(program, left, v_in, new_v, subst_in, new_subst) &

Solve(program, right, new_v, v_out, new_subst, subst_out).

Solve(program, goal, v_in, v_out, subst_in, subst_out) <-

Atom(goal) &

StatementMatchAtom(program, module, goal, statement) &

Resolve(goal, statement, v_in, new_v, subst_in, new_subst, new_goal) &

Solve(program, new_goal, new_v, v_out, new_subst, subst_out).

Figure 3.3: A Simple Gödel Meta-Interpreter

The implementation of Resolve must handle the following operations:

• Renaming the statement to ensure that the variables in the renamed statement are different

from all other variables in the current goal.

• Applying the current answer substitution to the atom to ensure that any variables bound in

the current answer substitution are correctly instantiated.

• Unifying the atom with the head of the renamed statement.

• Composing the mgu of the atom and the head of the statement with the current answer

substitution to return the new answer substitution.

Each of these four operations is potentially very expensive when we are dealing with the explicit

representation of substitutions, therefore it is vital that Resolve be implemented as efficiently as

possible.

By contrast to the use of Resolve, as in the interpreter of Figure 3.3, consider the somewhat

naive (although still declarative) interpreter of Figure 3.4. The third statement in the interpreter

performs the same task as that of the third statement in the interpreter of Figure 3.3. However

this naive interpreter is arguably more obtuse than that of Figure 3.3, as the manipulation of

formulas and substitutions is here being performed explicitly. There would appear to be two very

strong arguments for avoiding this style of meta-programming. The first is that it is more arduous

for a programmer, requiring as it does explicit and sophisticated manipulation of formulas and

substitutions. The second is not immediately apparent, but it is that the implementation of the

interpreter of Figure 3.4 would be noticeably less efficient than that of Figure 3.3. Furthermore,
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Demo(program, goal, subst, subst) <-

EmptyFormula(goal).

Demo(program, goal, subst_in, subst_out) <-

And(left, right, goal) &

Demo(program, left, v_in, new_v, subst_in, new_subst) &

Demo(program, right, new_v, v_out, new_subst, subst_out).

Demo(program,goal,subst_in,subst_out) <-

Atom(goal) &

StatementMatchAtom(program, module, goal, statement) &

RenameFormulas([goal], [statement], [statement1]) &

IsImpliedBy(head, body, statement1) &

ApplySubstToFormula(goal, subst_in, goal1) &

UnifyAtoms(goal1, head, mgu) &

ComposeTermSubsts(subst_in, mgu, new_subst) &

Demo(program, body, new_subst, subst_out).

Figure 3.4: A Naive Gödel Meta-Interpreter

the interpreter of Figure 3.3 may be specialised with respect to an object program in order to

remove the majority of the expense of the ground representation, as we shall describe below.

With the inherent inefficiencies of the interpreter of Figure 3.4 however, with its repeated explicit

manipulation of the representations of the atom, statement and current substitution, it is far from

clear that any specialisation could specialise the resolution process to the same extent.

3.3.1 Specialising Resolve

When we specialise a meta-program such as the interpreter in Figure 3.3 to a known object program,

the statements in the object program will be known. Therefore we may specialise Resolve with

respect to each statement in the object program. Specialising a call to Resolve with respect to a

known statement will remove the vast majority of the expense of the ground representation. To

see how this is achieved we must look more carefully at the implementation of Resolve.

The atom Resolve(atom,st,v,v1,s,s1,body) is called to perform the resolution of the atom

atom with the statement st. The integers v and v1 are used to rename the statement with v

being the integer value used in renaming before the resolution step is performed and v1 being

the corresponding value after the resolution step has been performed. The representations of term

substitutions s and s1 represent respectively the answer substitution before and after the resolution

step. The last argument, body, is the representation of the body of the renamed statement.
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P(x,y,z,F(x,u)) <-

Q(x,x1) &

P(x1,y,z,u).

Figure 3.5: A Gödel Statement

Variable Renaming

In a call to Resolve, all variables in the statements are renamed as they are encountered. This

saves us from having to perform more than one pass over the statements during resolution. Any

variable encountered, which could potentially appear in the new goal, is replaced by a variable with

a name that does not occur elsewhere in the current computation. Variables in a statement fall

into one of three categories, depending on where they are first encountered. These are:

1. The variable appears in an argument position in the head of the statement. This variable

will be bound to the term in the atom’s matching argument position and thus does not need

to be renamed.

2. The variable appears as a subterm of a term in the head of the statement. This variable may

need to be renamed, but this cannot be determined until the matching term in the atom is

known.

3. The variable appears only in the body of the statement. This variable must be renamed.

For example, in the statement in Figure 3.5 the variables x, y and z are variables of the first type,

variable u is of the second type and variable x1 is of the third type. Thus while variable x1 will

certainly require renaming and variable u may require renaming, the remaining variables need not

be renamed. To see how renaming is achieved we must look more closely at how variables are

represented in Gödel.

When represented (by the term Var(name,N)), Gödel variables have names of the form name_N,

where name is the root of the name of the variable (a string) and the non-negative integer N is

called the index of the variable. To specialise renaming at all times we record Max, the highest

integer index occurring in a variable in the current computation, and a new variable will be given

the name v_Max1, where Max1 is the increment of Max. In addition, new names are given only to

variables that are guaranteed to occur in the resolvent. In this way the creation of new variables is

kept to a minimum. A call to Resolve takes the increment of the current value of Max as its third

argument and returns as its fourth argument the increment of the value of Max after all renaming

has been performed. Thus specialising the renaming of the statement in Figure 3.5 of this statement
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would create the terms Var("v",max+1) and (assuming that the variable u also required renaming)

Var("v",max+2), where max is the current highest variable index.

Applying the Current Substitution

Before we attempt to unify the atom with the head of the statement we must consider the possibility

that certain variables in the atom will have become bound in the current substitution. Such bindings

must be taken into consideration and yet to apply the current substitution to all the terms in the

atom is an unnecessary expense. To reduce this expense we must consider the terms in the head

of the statement, these terms will each be one of:

1. A variable. Unless this is a repeated variable then the unification of this variable with the

matching term in the atom will always succeed. Thus we do not need to apply the current

substitution to the matching term in the atom.

2. A constant. We must apply the current substitution to the matching term in the atom before

attempting to unify it with this constant.

3. A term with a function at the top level. We must test whether the matching term in the

atom is bound in the current substitution to either a variable or to a term with a matching

function at the top level. If the term in the atom is bound to a term with a matching function

at the top level then we will compare this term’s arguments with the arguments of the term

in the statement.

Note that in the third case, even though we must test whether the matching term in the atom is a

term with a function at the top level, we do not necessarily need to apply the current substitution

to the arguments of this term. In the statement in Figure 3.5 for example, if the fourth argument

of an atom we wished to resolve with this statement were bound to some term F(T1,T2), we would

not need to apply the current substitution to the term T2 in order to unify it with the matching

variable u in the term F(x,u).

Head Unification in Resolve

The third operation to be performed in the resolution of an atom with a statement is the unification

of the atom and the head of the statement. The unification algorithm employed enforces occur-

checking for safeness. Although occur-checking is potentially very expensive, this expense may be

greatly reduced by enforcing occur-checking for repeated variables in the head of the statement

only.

After renaming, all variables in the statement are guaranteed not to appear elsewhere in either

the current goal or the current substitution. This means that any bindings for variables in the head
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of the statement may be applied to the body of the statement and then discarded. Consequently

only that part of the mgu of the atom and the renamed head of the statement that records the

bindings of variables in the atom will need to be composed with the current substitution in order

to produce the new substitution.

For example, when unifying an atom with the statement in Figure 3.5, the bindings for the

variables x, y and z in the statement are recorded separately from any potential bindings for

variables in the atom. These bindings may then be applied to the body of the statement, replacing

the variables x, y and z by the terms to which they have been bound. There will only be one

potential occur-check during the unification of an atom with the head of this statement and that

will be if the fourth argument of the atom is a term F(T1,T2). In this case the first argument of

this function term will be unified with the first argument of the atom and an occur-check will be

performed for this unification step alone.

Composition of the Mgu with the Current Substitution

Having performed the unification of an atom with the head of a statement we must in theory

combine the mgu of this unification with the current substitution. In reality it is more efficient

for any bindings made to variables in the atom to be composed with the current substitution

immediately. In order to achieve these compositions we have a set of predicates, each of which

performs one specific unification operation. The predicates which unify arguments of the head of

the statement with the matching arguments of the atom are as follows:

UnifyTerms(term1,term2,subst,subst1) attempts to unify the atom’s two terms term1 and

term2. UnifyTerms is the only one of these specific argument unification operations which

enforces occur-checking and is used to unify repeated variables in the head of the statement.

In this and the two subsequent atoms, subst is the current substitution and subst1 is this

substitution after the relevant unification step.

GetConstant(term,constant,subst,subst1) attempts to unify the atom’s term term with the

constant constant.

GetFunction(term,function,mode,subst,subst1) attempts to unify the atom’s term term with

a term function with a function at the top level. If term is bound in the current substitution

to a variable then mode is set to Write and function will subsequently be instantiated to a

renamed version of the term to which this variable is to be bound. If term is bound in the

current substitution to a term with a matching function at the top level then mode is set to

Read.
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If an argument in the head of the statement is a term with a function at the top level, then there

are two cases in which a call to GetFunction will succeed. In the first case the atom’s matching

argument is a variable and we must construct a renamed version of the term in the head of the

statement and then bind this variable to it. In the second case the atom’s matching argument is a

term with a matching function at the top level and we must unify the arguments of this term with

the corresponding arguments in the statement’s term.

For example, the term F(x,u) appears in the head of a statement in Figure 3.5. Thus we make

a call to GetFunction which will succeed with mode set to Write if the atom’s fourth argument is

bound to a variable in the current substitution and will succeed with mode set to Read if the atom’s

fourth argument is bound in the current substitution to some term F(T1,T2).

The following predicates perform the unification operations necessary for processing the argu-

ments of function terms in the head of the statement, either renaming variables when in Write

mode or unifying these arguments with the arguments of the matching function term in the atom

when in Read mode.

UnifyVariable(mode,term,var,ind,ind1) in Write mode will instantiate var to the new varia-

ble Var("v",ind) and ind1 = ind+1. In Read mode, var is instantiated to the atom’s term

term and ind1 = ind.

UnifyValue(mode,term,term1,subst,subst1) in Write mode will instantiate term1 to term. In

Read mode this call will unify (with occur-checking) the atom’s two terms term and term1.

In this and the two subsequent atoms, subst is the current substitution and subst1 is this

substitution after the relevant unification step.

UnifyConstant(mode,term,constant,subst,subst1) in Write mode will instantiate term to

the constant constant. In Read mode this call attempts to unify the atom’s term term with

the constant constant.

UnifyFunction(mode,term,function,mode1,subst,subst1) in Write mode will instantiate

term to the term function and mode1 is set to Write. In Read mode this call attempts

to unify the atom’s term term with a term function with a function at the top level. If term

is bound in the current substitution to a variable then mode1 is set to Write and function

will subsequently be instantiated to a renamed version of the term to which this variable is

to be bound (as for GetFunction). If term is bound in the current substitution to a term

with a matching function at the top level then mode is set to Read.

Example Figure 3.6 illustrates the result of specialising Resolve with respect to the statement

in Figure 3.5. In the second argument in the head of this specialised statement, the term statement
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Resolve(

Atom(P’, [arg1, arg2, arg3, arg4]),

statement,

v, v1+1 ,

subst_in, subst_out,

Atom(Q’, [arg1, Var("v", v1)]) &’ Atom(P’, [Var("v", v1), arg2, arg3, var])

) <-

GetFunction(arg4, F’([sub1, sub2]), mode, subst_in, new_subst) &

UnifyValue(mode, arg1, sub1, new_subst, subst_out) &

UnifyVariable(mode, sub2, var, v, v1).

Figure 3.6: Specialised code for Resolve

denotes the representation of the statement in Figure 3.5, which we have omitted for the sake of

brevity. The residual calls in the body of the specialised call to Resolve unify the atom’s fourth

argument with a term with a function named F at the top level and two arguments. If the atom’s

fourth argument is bound to a variable in subst_in then mode is set to Write by the call to

GetFunction, which also binds this variable, in new_subst, to a new term with this function at

the top level. The subsequent calls to UnifyValue and UnifyVariable will then instantiate the

arguments of this new function term to the atom’s first argument, arg1, and a new variable, var.

They will also set subst_out = new_subst and v1 = v+1. If the atom’s fourth argument is bound

in subst_in to a term with a matching function symbol at the top level then mode is set to Read and

new_subst = subst_in. The call to UnifyValue then unifies, with occur-checking, the atom’s first

argument, arg1, with the first argument, sub1, of this function term. If successful, this unification

will return the new substitution subst_out. The call to UnifyVariable then instantiates var to

the second argument, sub2, of the atom’s function term and sets v1 = v.

A more complex example of the specialised code for Resolve is given in Figure 3.7. Here, by

specialising Resolve to the statement P(x,x,A,F(y,F(x,A))) <- Q(y) we may see an example of

a call to each of the seven predicates described above.

The above seven predicates we refer to as the WAM-like predicates, as they are analogous to

emulators for the WAM instructions GetValue (in the case of UnifyTerms), GetConstant, GetFun-

ction, UnifyValue, UnifyVariable and UnifyConstant, after which they are named. Note that a

subtle difference in the manner in which the WAM implements the unification of nested function

terms and the manner in which Resolve implements it means that the WAM does not have an

equivalent to the UnifyFunction instruction.
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Statement: P(x, x, A, F(y, F(x, A))) <- Q(y).

Specialised call to Resolve:

Resolve(

Atom(P’, [arg1, arg2, arg3, arg4]),

statement,

v, v1,

subst_in, subst_out,

Atom(Q’, [var])

) <-

UnifyTerms(arg1, arg2, subst_in, s1) &

GetConstant(arg3, A’, s1, s2) &

GetFunction(arg4, F’([sub1, sub2]), mode, s2, s3) &

UnifyVariable(mode, sub1, var, v, v1) &

UnifyFunction(mode, sub2, F’([sub21, sub22]), mode1, s3, s4) &

UnifyValue(mode1, arg1, sub21, s4, s5) &

UnifyConstant(mode1, sub22, A’, s5, subst_out).

Figure 3.7: More specialised code for Resolve

The local part for the module Substs given here illustrates a potential implementation of these

WAM-like predicates, other than UnifyTerms which we describe in detail in appendix A.1. A call

BindVariable(v,t,s,s1) is used in this module to add a variable binding, where v is the represen-

tation of a variable, t the representation of a term, s the representation of a substitution θ and s1

the representation of the substitution θ ◦{v/t}. It should be noted that these WAM-like predicates

support the implementation of the representation of term substitutions as an abstract data type.

That is to say, the actual implementation of the representation of a substitution is hidden, even in

the specialised code for a Gödel meta-program that is partially evaluated by SAGE. The current

implementation for the representation of substitutions and the corresponding implementation for

the WAM-like predicates is described in more detail in appendices A.2 and A.3 respectively.

As a final note on the optimisation of the composition of the mgu with the current substitution

it should be noted that composition is in general a very expensive operation. This expense may

be significantly reduced by careful implementation of the representation of term substitutions. As

we have stated above, details of this implementation are hidden from the user and are independent

of the implementation of Resolve described here. A discussion on the expense of composition of

substitutions and how we avoid it is included in appendix A.2.
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LOCAL Substs.

GetConstant(term, constant, subst, subst1) <-

IF term = constant

THEN subst1 = subst

ELSE Variable(term) &

BindVariable(term, constant, subst, subst1).

GetFunction(term, function, mode, subst, subst1) <-

FunctionTerm(function, functor, args) &

IF FunctionTerm(term, functor, _)

THEN subst1 = subst &

mode = Read

ELSE Variable(term) &

mode = Write

BindVariable(term, function, subst, subst1).

UnifyVariable(Write, _, variable, var, var+1) <-

VariableName(variable, "v", var).

UnifyVariable(Read, term, term, var, var).

UnifyValue(Write, term, term, subst, subst).

UnifyValue(Read, term1, term2, subst, subst1) <-

UnifyTerms(term1, term2, subst, subst1).

UnifyConstant(Write, constant, constant, subst, subst).

UnifyConstant(Read, term, constant, subst, subst1) <-

GetConstant(term, constant, subst, subst1).

UnifyFunction(Write, function, function, Write, subst, subst).

UnifyFunction(Read, term, function, mode, subst, subst1) <-

GetFunction(term, function, mode, subst, subst1).
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3.3.2 Implementing Resolve

Following the above explanation of the optimisations underlying the ground representation of

resolution in Gödel and the introduction of the WAM-like predicates, we may now present the

Gödel code for the implementation of Resolve.

The first block of code gives the implementation of the unification of the atom with the head of

the statement. Here variables with the prefix v_max hold the values of the maximum variable index,

variables with the prefix push hold the bindings for the variables in the head of the statement and

variables with the prefix subst hold the representation of the current substitution.

Resolve(Atom(p,a1),Atom(p,a) <-’ body,v_max,v_max1,subst,subst1,new_body) <-

UnifyArgs(a,a1,v_max,v_max2,[],push,subst,subst1) &

ApplySubstToFormula(body,v_max2,v_max1,[],push,_,new_body).

UnifyArgs([],[],v_max,v_max,push,push,subst,subst).

UnifyArgs([st_term|rest1],[atom_term|rest2],v_max,v_max1,push,push1,s_in,s_out) <-

UnifyTerms(st_term,atom_term,v_max,v_max2,push,push2,s_in,subst1) &

UnifyArgs(rest1,rest2,v_max2,v_max1,push2,push1,subst1,s_out).

UnifyTerms(Var(s,i),atom_term,v_max,v_max,push,push1,subst_in,subst_out) <-

IF SOME [value] Member(Var(s,i) ! value,push)

THEN UnifyTerms(value,atom_term,subst_in,subst_out) &

push1 = push

ELSE subst_out = subst_in &

push1 = [Var(s,i) ! atom_term|push].

UnifyTerms(Term(f,args),atom_term,v_max,v_max1,push,push1,subst_in,subst_out) <-

GetFunction(atom_term,Term(f,atom_args),mode,subst_in,subst1) &

CheckFunctionTerm(args,atom_args,mode,v_max,v_max1,push,push1

,subst1,subst_out).

UnifyTerms(CTerm(t),atom_term,v_max,v_max,push,push,subst_in,subst_out) <-

GetConstant(atom_term,CTerm(t),subst_in,subst_out).

CheckFunctionTerm([],[],_,v_max,v_max,push,push,bind,bind).

CheckFunctionTerm([a|rest],[a1|rest1],mode,v_max,v_max1,push,push1,bind,bind1) <-

CheckFunctionTerm1(a,a1,mode,v_max,v_max2,push,push2,bind,bind2) &

CheckFunctionTerm(rest,rest1,mode,v_max2,v_max1,push2,push1,bind2,bind1).

CheckFunctionTerm1(Var(s,i),arg1,mode,v_max,v_max1,push,push1,bind,bind1) <-

IF SOME [value] Member(Var(s,i) ! value,push)

THEN UnifyValue(mode,value,arg1,bind,bind1) &

v_max1 = v_max &
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push1 = push

ELSE UnifyVariable(mode,arg1,v_max,v_max1) &

push1 = [Var(s,i) ! arg1|push] &

bind1 = bind.

CheckFunctionTerm1(Term(f,args),arg1,mode,v_max,v_max1,push,push1,bind,bind1) <-

UnifyFunction(mode,arg1,Term(f,atom_args),mode1,bind,bind2) &

CheckFunctionTerm(args,atom_args,mode1,v_max,v_max1,push,push1,bind2,bind1).

CheckFunctionTerm1(CTerm(t),arg1,mode,v_max,v_max,push,push,bind,bind1) <-

UnifyConstant(mode,arg1,CTerm(t),bind,bind1).

Having unified the atom with the head of the statement, we turn our attention to the body of

the statement. Any variables in the body of the statement which appeared in the head will have

been bound to some new term, either a term in the atom or a new variable. These bindings are

held as a list of bindings by variables with the prefix push, as above. These bindings will also now

be augmented by the new variable names which are used to rename those variables which appear

only in the body of the statement.

The next block of code gives this operation for an illustrative sample of the potential formulas

in the body of the statement. Note that particular care is taken with quantified variables. A

locally quantified variable may share the same name with a variable appearing outside the scope of

the quantifier. When processing the variables in the body of the statement we ensure that locally

quantified variables are renamed so that their new names differ from all other variables in the

statement. Consequently, having performed a resolution step we may be sure that the names of

locally quantified variables will not appear outside the scope of the quantifier. The new names for

these locally quantified variables are held separately from the other bindings by the variables with

the prefix quant.

ApplySubstToFormula(Empty,v_max,v_max,_,push,push,Empty).

ApplySubstToFormula(left &’ right,v_max,v_max1,quant,push,push1,l1 &’ r1) <-

ApplySubstToFormula(left,v_max,v_max2,quant,push,push2,l1) &

ApplySubstToFormula(right,v_max2,v_max1,quant,push2,push1,r1).

ApplySubstToFormula(Atom(p,args),v_max,v_max1,quant,push,push1,Atom(p,args1)) <-

ApplySubstToArgs(args,v_max,v_max1,quant,push,push1,args1).

ApplySubstToFormula(Some(s,f1),v_max,v_max1,quant,push,push1,Some(s1,f2)) <-

StandardiseApartQuants(s,s1,quant,quant1,v_max,v_max2) &

ApplySubstToFormula(f1,v_max2,v_max1,quant1,push,push1,f2).

StandardiseApartQuants([],[],quant,quant,max,max).

StandardiseApartQuants([var|r],[Var("v",mx)|r1],qnt,qnt1,mx,mx1) <-

StandardiseApartQuants(r,r1,[var ! Var("v",mx)|qnt],qnt1,mx+1,mx1).

When processing a particular variable in the body of the statement we will have one of the

following cases:
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• The variable is locally quantified. In this case we replace this variable with the new name

assigned to it.

• The variable is not locally quantified, but has been previously encountered in either the head

of the statement or a part of the statement body which has already been processed. In this

case a new value will already have been assigned for this variable and we replace the variable

with this new value.

• The variable has not yet been encountered. In this case a new name is generated for this

variable and this assignment is recorded.

The last block of code gives the implementation of these operations.

ApplySubstToArgs([],v_max,v_max,_,push,push,[]).

ApplySubstToArgs([arg|rest],v_max,v_max1,quant,push,push1,[arg1|rest1]) <-

ApplySubstToTerm(arg,v_max,v_max2,quant,push,push2,arg1) &

ApplySubstToArgs(rest,v_max2,v_max1,quant,push2,push1,rest1).

ApplySubstToTerm(Var(s,i),max,max1,quant,push,push1,term1) <-

IF SOME [term2] Member(Var(s,i) ! term2,quant)

THEN max1 = max &

push1 = push &

term1 = term2

ELSE IF SOME [term2] Member(Var(s,i) ! term2,push)

THEN max1 = max &

push1 = push &

term1 = term2

ELSE max1 = max+1 &

push1 = [Var(s,i) ! term1|push] &

term1 = Var("v",max).

ApplySubstToTerm(Term(f,args),max,max1,quant,push,push1,Term(f,args1)) <-

ApplySubstToArgs(args,max,max1,quant,push,push1,args1).

ApplySubstToTerm(CTerm(term),v_max,v_max,_,push,push,CTerm(term)).

3.3.3 Handling Committed Formulas with ResolveAll

There is one last aspect of standard Gödel statements that we must consider before our description

of the implementation of resolution in the ground representation is complete. This is the issue of

the renaming of commits in Gödel statements.

For much the same reason that variables in a statement must be renamed before resolution to

avoid clashing with the names of variables in the current goal, so must the labels of commits in
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statements be renamed before resolution. However, the labels (which are integer values) of the

commits in a statement must be renamed in the context of the entire definition of the predicate.

For example, given the following definition of a predicate P:

P(x, y) <-

{ Q(x) }_1 & R(y).

P(x, y) <-

{ S(x) }_1 & T(y).

P(x, y) <-

{ U(x) }_1 & V(y).

suppose that we wish to rename the commit label in one of these statements. We could achieve

this by replacing the integer label 1 by the new integer max_com+1, where max_com is the highest

integer value used in the label of a commit in the current computation. However, if we subsequently

wished to rename the commit label in a second of these statements in a manner that preserved the

scope of this commit then we would need to rename this label with the same integer value that was

used to rename the first statement. We would similarly need to use the same new label again to

rename the third statement correctly.

To implement this renaming of commit labels correctly it would therefore seem obvious that

we should rename all of the commit labels in the entire definition of the predicate at the same

time. To assist the user in achieving this Gödel provides a more powerful version of Resolve which

is named ResolveAll. ResolveAll performs resolution by resolving an atom with respect to the

entire definition of the predicate which this atom matches, returning two lists. The first list contains

the bodies of the statements which have successfully been resolved with the atom and the second

list returns the relevant new substitutions for these resolutions.

The atom ResolveAll(atom,sts,v,v1,c,c1,s,ss,bs) is called to perform the resolution of

the atom atom with the list, sts, of the statements defining the predicate that matches the predicate

of atom. The integers v and v1 are used to rename the statements in this list, as in Resolve. In a

similar fashion the integers c and c1 are used to rename the commit labels in these statements. The

representation of the term substitution s represents the current answer substitution. The last two

arguments to ResolveAll, ss and bs, represent respectively the list of new answer substitutions

and the corresponding list of the bodies of those statements in sts for which the resolution was

successful.

The first block of code for ResolveAll illustrates the renaming of commits in the statements we

are resolving the atom with respect to. Here the bodies of the statements are analysed to find the

commits in them and new commit labels are generated for those commits which have not already

been renamed during the resolution of the other statements.
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ResolveAll(atom,ss,var,var1,com,com1,subst,substs,ress) <-

ResolveAll1(ss,atom,var,var1,com,com1,[],subst,substs,ress).

ResolveAll1([],_,var,var,com,com,_,_,[],[]).

ResolveAll1([head <-’ body|rest],atom,v,Max(v1,v2),c,c1,new_coms,subst,ss,ress) <-

StandardiseCommits(body,c,c2,new_coms,new_coms1) &

(

IF SOME [v3,s1,body1] Resolve(atom,head,body,v,v3,new_coms1,subst,s1,body1)

THEN ress = [body1|ress1] &

ss = [s1|ss1] &

v1 = v3

ELSE ress = ress1 &

ss = ss1 &

v1 = v

) &

ResolveAll1(rest,atom,v,v2,c2,c1,new_coms1,subst,ss1,ress1).

StandardiseCommits(left &’ right, c, new_c, label_dict, new_label_dict) <-

StandardiseCommits(left, c, c1, label_dict, label_dict1) &

StandardiseCommits(right, c1, new_c, label_dict1, new_label_dict).

StandardiseCommits(Commit(label, formula), c, new_c, label_dict, label_d) <-

NewCommit(label, c, c1, label_dict, label_dict1) &

StandardiseCommits(formula, c1, new_c, label_dict1, label_d).

StandardiseCommits(Empty, c, c, label_dict, label_dict).

StandardiseCommits(Atom(_,_), c, c, label_dict, label_dict).

NewCommit(label, c, new_c, label_dict, new_label_dict) <-

IF SOME [label1] Member(LabelPair(label, label1), label_dict)

THEN

new_c = c &

new_label_dict = label_dict

ELSE

new_label_dict = [LabelPair(label, c)|label_dict] &

new_c = c + 1.

It should be noted that the renaming of commits is not performed immediately. Instead we have

added an extra argument to Resolve which is used to pass on a list of the values used to rename the

commits. The definition of Resolve is modified so that this list is passed on as an extra argument

to ApplySubstToFormula. The modified definition for ApplySubstToFormula is virtually identical

to the definition given in the previous section, the only difference being that we are now able to

include the case where the body of the statement contains committed formulas.
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ApplySubstToFormula(Commit(l,f),v_max,v_max1,quant,p,vs,vs1,coms,Commit(l1,f1)) <-

MemberCheck(LabelPair(l,l1),coms) &

ApplySubstToFormula(f,v_max,v_max1,quant,p,vs,vs1,coms,f1).

The Gödel code for ResolveAll given above is in fact the code that forms the heart of SAGE′s

unfolding process. As such, it was designed with the intention that it should be both efficient

and able to be specialised in order to produce highly optimised residual code. Thus specialising

ResolveAll illustrates a part of the self-application of SAGE. It also highlights our main aim in the

definition of ResolveAll, which was to produce a declarative implementation of resolution for the

ground representation that was both efficient and capable of producing significantly more efficient

code upon specialisation. It is from the original implementation of SAGE that we have developed

Gödel’s current implementation of substitutions, unification and resolution, so that the code for

Resolve and ResolveAll may now also be utilised by other meta-programs and specialised by

SAGE in order to remove the overheads of the ground representation, while retaining the power of

meta-programming.

A Word on the Full WAM Engine

Previous work in [54] has shown that it is possible to emulate that part of the WAM that deals with

the execution of alternative statements in a predicate definition. That is, that part of the WAM

which uses the Try-Me-Else, Retry-Me-Else and Trust-Me instructions to handle choicepoints. This

is achieved by the specialisation of an abstract machine (essentially a meta-interpreter) with respect

to lists of statements in a propositional logic and is thus very closely related to that which we have

achieved above for the predicate logic case.

It would be possible for us to combine our techniques presented here for specialising the

resolution of individual statements in a predicate logic with the techniques of [54] in order to arrive

at a more sophisticated implementation of ResolveAll. This new implementation could conceiva-

bly be further extended to also emulate first-argument indexing over alternative statements in the

definition of a predicate. This would give us a definition of ResolveAll for which the specialised

code would emulate the full WAM instructions for the definitions of predicates, incorporating the

WAM’s handling of choicepoints and first-argument indexing. Unfortunately, to choose this ap-

proach would also force the implementation of ResolveAll to interpret the process of resolution

in the sequential manner inherent to the WAM and thus it would not have the declarative aspect

that we wished for. Consequently we have not taken this approach in the above implementation.
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3.3.4 Specialising Unification

Gödel provides predicates to handle the general unification of the representations of types, terms

and atoms. UnifyTerms for example, is called by Resolve when two terms in the atom to be

resolved need to be unified. The main difference between the intended applications of Resolve

and, for example, UnifyTerms is that while Resolve is intended to be used in cases when we may

be certain that variables in the statement that we are resolving will not appear in the current answer

substitution, we do not have this assurance for UnifyTerms. That is to say, when calling Resolve

to perform a resolution step with respect to a statement we would expect that the variables in the

statement would be renamed by new variable names that do not occur elsewhere in the current

computation. In general UnifyTerms will be called to unify two terms, both of which may contain

variables that occur elsewhere in the current computation and may therefore be bound in the

current answer substitution.

UnifyTerms(t1,t2,s,s1) takes as arguments the representations, t1,t2, of the two terms to

be unified and the representations, s,s1, of two substitutions. These two (representations of)

substitutions may be viewed as ‘input’ and ‘output’ substitutions, representing the state of some

computed answer both before and after the unification is performed. To be precise, when the first

two arguments to UnifyTerms are the representations of the terms t1 and t2, respectively, and

the third argument is the representation of the substitution θ, then the fourth argument is the

representation of the composition, θ ◦ φ, of the substitutions θ and φ, where φ is a unique, specific

most general unifier for the terms t1θ and t2θ.

As the input substitution must be applied to both of the two terms to be unified, we are unable

to produce an implementation of UnifyTerms that we may specialise to the extent that we may

specialise Resolve.

For example, to specialise the atom UnifyTerms(Var("v",1),t,s,s1) we would need firstly

to determine whether the variable Var("v",1) was bound to any other value in the substitution

s. As s is unknown at this point, this is not possible and therefore it seems fruitless to attempt to

specialise further.

The implementation for UnifyTypes and UnifyAtoms is similar to that for UnifyTerms. The

code for UnifyTerms is presented in appendix A.1.

3.4 A Framework for Meta-Programs

Meta-programs are generally large complex programs. We may utilise our knowledge of the

similarities in the structure of most meta-programs to guide specialisation. By providing a ge-

neral skeletal structure for meta-interpreters, we discuss the specialisation of such programs into a

form that is as close as possible to our intuitive idea of an ideal residual program. Later we show
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how SAGE performs an automatic specialisation matching the intuitive one.

Our approach has been to perform a static analysis of the program and query to be speciali-

sed. Information gained about the structure of the program, particularly those predicates whose

unrestricted unfolding may potentially lead to infinite unfolding, is then used to guide the unfol-

ding process. The information gained from the static analysis, coupled with our knowledge about

the general structure of meta-programs, is used to guide the partial evaluation and thus influence

the structure of the residual program. This structure for the residual program is such that code

explosion is avoided. We use the term code explosion here to cover two forms of inefficiency. Firstly,

the introduction or duplication of redundant terms and code and secondly over-eager unfolding lea-

ding to an explosion of run-time search. It is as a consequence of our technique for avoiding code

explosion that the unfolding process is guaranteed to terminate.

3.4.1 Structure of Meta-Interpreters

To illustrate the structures of meta-programs and their specialised versions we examine interpreters

that use Gödel’s ground representation. In general such programs, which compute the answer-

substitution of some query with respect to some object program, may perform some preprocessing

of the program and query to be interpreted. Following this the query is interpreted and some

postprocessing may then be performed upon the computed answer. The interpretation of the

goal will generally be handled by recursively performing single resolution steps upon the currently

computed goal. Figure 3.8 illustrates this structure. In this program, the main predicate Demo

performs the preprocessing, calls predicate Select to select some subgoal (the leftmost atom, for

example) from the current goal and calls Demo1 to compute the answer, which is then postprocessed.

The recursive predicate Demo1 returns the answer substitution if the computation has terminated

(base case) and otherwise performs a single resolution step followed by a selection step and then

calls Demo1 again (recursive case).

The code for SimpleResolve is described in Figure 3.11 and performs a single resolution step.

It should be noted here that SimpleResolve is a gross simplification for the predicate Resolve and

is in fact insufficient for correct meta-programming as the renaming of statements is not considered.

We introduce this simpler version of Resolve purely for the sake of brevity and hence we do not

consider here standardisation apart and the other features of Resolve.

3.4.2 An (Intuitive) Ideal Specialisation

The greatest expense incurred by the use of the ground representation occurs in the manipula-

tion of substitutions. When any variable binding is made, this must be explicitly recorded. Thus

any unification, and similarly the composition and application of substitutions, must be performed
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Demo(program,query,answer) <-

Preprocess(program,query,goal) &

EmptyTermSubst(empty) &

Select(goal,left,selected,right) &

Demo1(program,selected,left,right,empty,subst) &

Postprocess(program,subst,answer).

Demo1(_,selected,_,_,subst,subst) <-

EmptyFormula(selected).

Demo1(program,selected,left,right,subst_in,subst_out) <-

StatementMatchAtom(program,selected,statement) &

SimpleResolve(selected,statement,body,subst_in,subst1) &

And(left,body,left1) &

And(left1,right,goal) &

Select(goal,l,s,r) &

Demo1(program,s,l,r,subst1,subst_out).

Figure 3.8: Basic Structure for Meta-Interpreters

explicitly. This produces significant overheads in the manipulation of the representations of terms

and formulas. In Section 3.3 it was shown how this expense may be greatly reduced by specialising

resolution with respect to a specific object program. In the interpreter of Figure 3.8 we may spe-

cialise the predicate SimpleResolve with respect to the statements in some object program in this

manner. Having performed such a specialisation we would therefore wish to replace the recursive

statement defining Demo1 with, for each statement in the object program, a specialised statement

for Demo1 for which the call to SimpleResolve has been specialised to the object statement.

Figure 3.9 illustrates the structure that, we argue, is most suitable for a specialised version of the

interpreter in Figure 3.8. Here we have specialised the meta-interpreter with respect to a program

containing two statements defining, respectively, predicates P and Q. The recursive statement in the

definition of Demo1 has been specialised to produce one statement for each of these two statements

in the object program. Note that while the definitions of Demo1 and Select have been specialised,

calls to these predicates in the definitions of Demo and Demo1 have not been unfolded (as Preprocess

and Postprocess have).

There are two notational conventions that we introduce here. In the first we have removed cer-

tain superfluous terms in the specialised code. For example, in Figure 3.9 we have removed the terms

representing the object program which we have specialised the interpreter with respect to. Thus

we have replaced an atom such as Demo(program,goal,answer) by the atom Demo(goal,answer).
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Demo(query,answer) <-

Preprocess*(query,goal) &

Select(goal,left,selected,right) &

Demo1(selected,left,right,EmptySubst,subst) &

Postprocess*(subst,answer).

Demo1(EmptyFormula,_,_,subst,subst).

Demo1(P(args),left,right,s_in,s_out) <-

SimpleResolve*(args,body,s_in,s1) & % Specialised code for atom P(...)

Select(left &’ body &’ right,l,s,r) &

Demo1(s,l,r,s1,s_out).

Demo1(Q(args),left,right,s_in,s_out) <-

SimpleResolve*(args,body,s_in,s1) & % Specialised code for atom Q(...)

Select(left &’ body &’ right,l,s,r) &

Demo1(s,l,r,s1,s_out).

Figure 3.9: Specialised Structure of Meta-Interpreters

We shall describe a more general application of this technique later. Secondly, we use the con-

vention that in specialised programs we append an asterix to the name of a predicate in order

to denote the replacing of an atom in the original program by the specialisation of this call. For

example, in Figure 3.9 we use the atom Preprocess*(query,answer) to indicate the replacement

of the call Preprocess(program,query,answer) in the original program by the (possibly empty)

conjunction of formulas forming the specialisation of that call.

3.4.3 Avoiding Code Explosion: Structure of Residual Programs

In Figure 3.9 we have not sought to unfold calls to Select in the definitions of Demo and Demo1

as, in general, we have insufficient knowledge of the arguments of such a call to be able to fully

specialise it. To unfold the call to Select in these statements would be counter-productive as it

would increase the amount of code and lead to less efficient residual code. Instead we have left

these calls to Select in the residual code for Demo and Demo1 and then specialised the definition

of Select separately, for the general case. Similarly in Demo, while we would quite probably wish

to at least partially specialise the calls to Preprocess and Postprocess, unfolding Demo1 would

again lead to an increase in the amount of (less efficient) residual code.

Figure 3.10 illustrates the result of unfolding the call to Demo1 in the definition of Demo in

Figure 3.9. Here, through over-specialisation, we have both increased the size of the residual code

and made it less efficient, as Preprocess* and Select are potentially called twice (once in each
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Demo(query,answer) <-

Preprocess*(query,goal) &

Select(goal,left,P(args),right) &

SimpleResolve*(args,body,EmptySubst,subst1) & % Resolve for P

Select(left &’ body &’ right,l,s,r) &

Demo1(s,l,r,subst1,subst_out) &

Postprocess*(subst,answer).

Demo(query,answer) <-

Preprocess*(query,goal) &

Select(goal,left,Q(args),right) &

SimpleResolve*(args,body,EmptySubst,subst1) & % Resolve for Q

Select(left &’ body &’ right,l,s,r) &

Demo1(s,l,r,subst1,subst_out) &

Postprocess*(subst,answer).

Figure 3.10: Unfolding of Demo1 in Demo

statement) although, with the query instantiated, only one version will succeed. In adding an extra

statement to the definition of Demo we have also introduced a superfluous choicepoint. It would

have been preferable to leave the call to Demo1 as a residual call in Demo, and have the specialised

definition of Demo1 separate.

Our justification for unfolding the calls to Preprocess and Postprocess in Demo as far as possi-

ble is as follows. Generally Postprocess will not be sufficiently instantiated to perform more than

a minimal specialisation, but a closer examination should allow this without risking code explosion.

Preprocess, in our experience, will either be sufficiently instantiated to be fully unfolded (or very

nearly so, leaving at most a few residual calls) or, like Postprocess, only suitable for minimal

specialisation. In either case Preprocess may be unfolded without a risk of code explosion in the

new definition of Demo. We illustrate this issue more clearly when we consider the specialisation

(by self-application) of the partial evaluator SAGE in Section 4.1.

Bearing the above issues in mind we see that ideally we would wish for the specialised meta-

interpreter to display a structure very similar to that of the original program, where calls to

Preprocess, Postprocess and SimpleResolve had been unfolded in the statements defining Demo

and Demo1, but not calls to Select and Demo1. The definitions of Select and Demo1 would then

be replaced by specialised versions of more general calls with these predicates. In this way we

avoid code-explosion, as we are effectively adding the object program to the meta-program, thus

preventing an excessive increase in the amount of residual code.

Our reasoning for singling out Demo1 and Select to be specialised separately, while permitting
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SimpleResolve(atom, statement, body, subst_in, subst_out) <-

IsImpliedBy(head, body, statement) &

PredicateAtom(head, pred, args1) &

PredicateAtom(atom, pred, args2) &

UnifyArgs(args1, args2, subst_in, subst_out).

UnifyArgs([], [], subst, subst).

UnifyArgs([arg1|rest1], [arg2|rest2], subst_in, subst_out) <-

UnifyTerms(arg1, arg2, subst_in, subst1) &

UnifyArgs(rest1, rest2, subst1, subst_out).

Figure 3.11: Code for SimpleResolve

SimpleResolve, Preprocess and Postprocess to be unfolded within Demo1 and Demo, is that Demo1

and Select are both recursive and unable to have that recursion removed. Therefore it is better

to retain them as independent (recursive) code, rather than embedding this recursion by unfolding

calls to these atoms in the bodies of Demo and Demo1 (as in the previous example). Embedding

of recursion in this way would lead to code explosion. Thus we want to detect those predicates

which may potentially be recursive in the residual code. Non-recursive predicates obviously will not

be, nor will any recursive predicates which may be selectively unfolded until they terminate. Our

strategy is to first detect all recursive predicates and then identify which of these can be guaranteed

to terminate. All other recursive predicates are highlighted as being potentially recursive in the

residual code.

Let us assume for the moment that a call to UnifyTerms may be specialised with a known first

argument to return a single, determinate, residual formula (which will be a conjunction of atoms)

in much the same manner as for Resolve in Section 3.3. Using this knowledge it can easily be seen

that, for a known object statement, the code for SimpleResolve in Figure 3.11 may be specialised

to produce a single, determinate, specialised formula. The recursive predicate UnifyArgs may be

unfolded without fear of non-termination, as its first argument will always be ground.

Our technique has been to fully analyse the program and query being partially evaluated before

commencing the partial evaluation. In this way we seek to find a set of predicates in the program

that are potentially ‘unsafe’ to the partial evaluation, that is, those predicates whose indiscriminate

selection might possibly lead to infinite unfolding. For example, when specialising the interpreter

in Figure 3.8 with respect to a call to Demo, the predicates Select and Demo1 would be unsafe.

In the partial evaluation, literals containing unsafe predicate symbols are not selected for
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unfolding. Generalised calls to these predicates are then unfolded by the same strategy. That

is, the predicates are unfolded without unfolding unsafe predicates. Our strategy is thus somewhat

conservative. Following this method, the results of the partial evaluation will be a set of specialised

calls to atoms in the query and of specialised definitions of all the unsafe predicates upon which

the specialised calls in the query depend. The static analysis performed by SAGE to detect unsafe

predicates is discussed in Chapter 4.

An alternative method to avoid code explosion is to enclose a non-determinate test in a condi-

tional. For example, if C is some non-determinate test which causes a computation to compute T if

C succeeds and E if C fails, then this may be expressed as IF C THEN T ELSE E. As described in

the previous chapter, the specialisation of a formula of this form will be a single residual conditional

formula in the case where C is not sufficiently instantiated to be fully unfolded.

3.4.4 Implementing a Selection Strategy

When specialising meta-programs we find that the program code falls into two more or less distinct

categories. In the first of these categories we place code which is sufficiently instantiated to allow

its unfolding and in the second category we place all code which must be left as residual code

after specialisation. For the partial evaluation of meta-programs this first category will generally

cover that code which manipulates the representation of the object program (which is known at

the time of partial evaluation) and the second category will cover that code which manipulates the

representations of goals to this object program (which will be unknown). This distinction has also

been highlighted in [43] where the code defining interpreters was partitioned into what was referred

to as parsing and execution instructions.

One important aspect of meta-programs which concerns the manipulations of object level goals

is the selection strategy that a meta-program implements. It is generally not possible to perform

more than a small amount of partial evaluation of such code. Normally we would not expect to be

able to do more than remove the overheads imposed by Gödel’s abstract data types for such code.

This then is a very strong argument for insisting that when writing a meta-program particular

care is taken to ensure that the implementation of the selection strategy should be as efficient as

possible.

Consider the implementations of a simple ‘leftmost literal’ selection function in figures 3.3 and

3.12. Here we have assumed that the left conjunct of a conjunctive formula is never empty and that

we will therefore always be able to select a literal from this formula. The simple meta-interpreter

of Figure 3.3 in fact only supports the selection of positive and not negative literals, but this could

easily be extended.

The major difference between the implementation of selection in figures 3.3 and 3.12 is that in

the first the selection function is implicit in the code for the interpreter whereas in the second it is
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Select(formula, left, selected, right) <-

And(l, r, formula) &

Select(l, left, selected, r1) &

AndWithEmpty(r1, r, right).

Select(formula, empty, formula, empty) <-

Literal(formula) &

EmptyFormula(empty).

Figure 3.12: A Simple Leftmost Literal Selection Function

Select(formula, left, selected, right) <-

And(l, r, formula) &

IF SOME [l1,r1,s] Select(l, l1, s, r1)

THEN

left = l1 &

selected = s &

AndWithEmpty(r1, r, right)

ELSE

Select(r, l1, selected, right) &

AndWithEmpty(l, l1, left).

Select(formula, empty, formula, empty) <-

Atom(formula) &

EmptyFormula(empty).

Figure 3.13: A Sophisticated Leftmost Literal Selection Function

made explicit by an explicit definition. Comparing the execution times of the specialised version of

the interpreter of Figure 3.3 with those for an interpreter which used the explicit selection function

of Figure 3.12 we will generally find that the former is around three to four times faster. This gives

us some indication of the expense inherent in an explicit selection function in the residual code for

a meta-program.

The selection strategies employed by figures 3.3 and 3.12 are naturally very simple and in general

we would require a more sophisticated implementation which allows for the possibility that we are

unable to select a literal from the left conjunct of a conjunction. Figures 3.13 and 3.14 illustrate two

potential implementations of a ‘leftmost-literal’ selection strategy which allow for this possibility.

The first of these implementations relies upon an implementation strategy which we refer to

as failure-driven. It utilises an IF-THEN-ELSE conditional to implement an attempt to first select
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Select(formula, formula, None, formula) <-

EmptyFormula(formula).

Select(formula, left, selected, right) <-

And(l, r, formula) &

Select(l, l1, s, r1) &

IF s = None

THEN Select(r, left, selected, right)

ELSE left = l1 &

selected = s &

AndWithEmpty(r1, r, right).

Select(formula, empty, Positive(formula), empty) <-

Atom(formula) &

EmptyFormula(empty).

Select(formula, empty, Negative(atom), empty) <-

Not(atom, formula) &

EmptyFormula(empty).

Figure 3.14: An Efficient Leftmost Literal Selection Function

a literal from the left conjunct of a conjunction and, failing that, from the right conjunct. This

implementation handles the failure to select a literal by failing to produce an answer.

By contrast to the failure-driven implementation of Figure 3.13, the selection strategy of Fi-

gure 3.14 relies upon a success or forward-driven strategy for its implementation. Rather than

failing to compute an answer if a literal cannot be selected from a formula, this implementation

computes an answer that reports the failure to select a literal by returning the constant None as the

selected formula. This implementation requires that a new type be introduced for the terms that

report success or failure of the selection strategy. This may be used to further effect in the return

of a successfully selected literal, as the atom in a literal will be returned as Positive(atom) if it is

a positive literal and Negative(atom) if it is a negative literal. Thus we may determine whether a

selected literal is positive or negative without needing to examine the representation of that literal.

We assert here that the forward-driven style of programming is more efficient and, arguably,

clearer than the failure-driven style. This is reflected in the comparison of execution times for the

residual code of a specialised forward-driven implementation of the selection strategy as opposed

to the specialised failure-driven implementation of the same strategy.

To summarise, we have identified two points to be considered when implementing Gödel meta-

programs. The first, very general, point is that the forward-driven style of programming is cleaner

and more efficient in both unspecialised and specialised programs than is the failure-driven style.
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The second point, specific to meta-programs, is that the selection strategy is a major computational

expense in specialised meta-programs and therefore the strategy should be as simple as possible

and its implementation should be as efficient as possible.

3.4.5 Removing Redundant Terms

The introduction of redundant terms is often a major cause of inefficiency in any residual code. This

problem can be particularly acute in specialising meta-programs which use a ground representation

as such programs often process some very large terms (such as the representation of an object

program). However, the majority of these terms can be removed through some fairly straightforward

postprocessing optimisations. For example, in Figure 3.9 a call to Demo(program,query,answer)

has been specialised with respect to some known program. Following specialisation the redundant

term representing the object program was removed, leaving the new binary predicate Demo. Any

subsequent call to Demo(program,query,answer) is replaced by a call to Demo(query,answer).

The implementation of these optimisations is described in more detail in Section 4.4. Similar

optimisations have been described in [22].



Chapter 4

The Anatomy of SAGE

In this chapter we examine how the partial evaluation techniques described in the previous chapter

are utilised by SAGE for the partial evaluation of Gödel programs.

SAGE is comprised of four modules, SAGE, PE, Analyse and Assemble. The figure below shows

the relationships between these four modules and the Gödel system modules that they each import.

An arrow from one module to another means the first module refers to the second.

SAGE

✟✟✟✟✟✟✟✟✟✟✙ ❄

❍❍❍❍❍❍❍❍❍❍❥

PE ProgramsIO ScriptsIO

�
�

�
�

�✠

❅
❅
❅

❅
❅❘

Analyse

❄

Assemble

❄

Programs Scripts

The module SAGE is the smallest of these modules and defines the user-interface for SAGE. SAGE is

the only module in SAGE which uses Gödel’s input/output facilities. The module PE defines the

code which computes partial evaluations. PE imports the two subsidiary modules Analyse, which

defines the code that computes SAGE’s static analyses, and Assemble, which defines the code that

74
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performs the post-processing optimisations and assembles the residual script.

Our description of SAGE breaks neatly into three parts which correspond to the three modules

Analyse, PE and Assemble. In Section 4.2 we describe in more detail the static analysis which

guides SAGE’s selection strategy. In Section 4.3 we provide details of the implementation of the

unfolding strategy employed by SAGE. In Section 4.4 we describe the postprocessing optimisations

performed by SAGE and how these results are incorporated into the assembly of the residual Gödel

script. Finally in Section 4.5 we outline the proofs of the termination and correctness of SAGE.

Before we examine SAGE in detail we first give an overview of the issues in constructing an

effectively self-applicable partial evaluator, thus providing a motivation for the anatomy of SAGE.

4.1 Constructing a Self-Applicable Partial Evaluator

The SAGE system introduced in this thesis is a partial evaluator for full Gödel. That is to say,

it has been designed to partially evaluate any program in the Gödel language, although particular

emphasis has been placed upon the specialisation of meta-programs. SAGE is therefore self-

applicable. That is, it is capable of specialising itself to produce efficient residual code. Specialising

full Prolog and the construction of an effective self-applicable Prolog partial evaluator are tasks

that are made most difficult by the so called ‘impure’ features of Prolog. This is illustrated by the

sophistication needed to specialise these features [59, 72]. By an ‘effective’ self-applicable partial

evaluator, we mean one capable of producing efficient residual code upon self-application.

In order for a partial evaluator to be self-applicable it needs to be a relatively sophisticated,

and fairly complex, program. In order to produce efficient code upon self-application the partial

evaluator needs to be able to produce relatively simple residual code. Consequently, the greatest

difficulty in achieving an effective, self-applicable partial evaluator, is that the more complex that

the partial evaluator becomes, the harder it is to specialise, and thus the less efficient the residual

code is likely to be. What is needed is for the partial evaluator to be as simple and straightforward as

possible and to employ no, or at least very few, excessively complex operations. It is for this reason

that previous attempts at self-applicability in Prolog partial evaluators have generally considered

only the unfolding of a pure subset of the language [18, 19, 51].

There are two major reasons for the complexity of most current full-language partial evaluators,

these being the ability to specialise the more complex facilities of the full language and the selection

strategy employed in computing a partial evaluation. We have overcome the first of these obstacles

by implementing SAGE in Gödel, which has few non-logical (and therefore hard to specialise)

features. Next we show how SAGE may be described in terms of the framework of Section 3.4

and how the specialisation of this framework, coupled with SAGE’s use of static analysis to guide

the selection strategy, enables SAGE to produce efficient code upon self-application. We claim
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Prolog’s failure to provide adequate meta-programming facilities, particularly a suitable ground

meta-representation, coupled with its impure features, seem likely to prevent an effective self-

applicable partial evaluator for full Prolog from ever being built.

4.1.1 Specialising a Self-Applicable Partial Evaluator

As has been stated, there are two criteria which an effectively self-applicable partial evaluator must

meet. The first is that it must be able to specialise all of the facilities provided by the language

in which it is implemented. The second is that it must produce specialised code which executes in

a significantly reduced time. In chapters 2 and 3 we have presented the necessary techniques for

specialising the various facilities of the Gödel language. In this section we shall describe the factors

that allow a Gödel partial evaluator to produce efficient residual code.

The framework for meta-interpreters, described in Section 3.4, can be extended to encompass

a partial evaluator and likewise the specialisation of such interpreters corresponds to the self-

application of such a partial evaluator. We have already identified the two major areas for expense

in such meta-programs as being their use of the ground representation and the potential expense

of a sophisticated selection strategy.

The self-application of a partial evaluator requires the specialisation of that partial evaluator to

a known object program. This object program will be a meta-interpreter in the case of the second

Futamura projection and the partial evaluator itself in the case of the third Futamura projection.

We have already seen in Section 3.3 how the expense of resolution, the most expensive aspect of

the ground representation, may be largely eliminated for these cases.

The majority of selection strategies proposed for partial evaluation, such as those in [3, 5,

10, 57, 74], involve a certain amount of dynamic ancestor-checking. The strategies range from

setting an ad hoc depth bound upon the amount of unfolding which is permitted to some extremely

sophisticated dynamic analysis based upon some well-founded ordering relations for atoms in the

partial evaluation. The most sophisticated selection strategies may often lead to better results, as

the results of a partial evaluation are largely determined by the selection strategy employed.

The drawback of employing a most sophisticated strategy is the expense, as operations such

as ancestor-checking can become immensely expensive for large partial evaluations. This expense

becomes an even more serious issue when we consider the self-application of a partial evaluator. As

we have already shown in Section 3.4.4, the dynamic aspect of the selection function employed by

any meta-program cannot be specialised to a large degree and can therefore be a significant expense

in the specialised code. As we wish to specialise the partial evaluator itself we should therefore

seek to reduce the dynamic aspect of its selection strategy as far as possible.

Next we describe a general framework in which we may describe the selection strategy for any

given partial evaluator. In terms of this framework we shall then discuss which kinds of selection



CHAPTER 4. THE ANATOMY OF SAGE 77

strategies are most amenable to specialisation.

4.1.2 A Framework for Selection in Partial Evaluation

We propose a general framework for the selection strategy of a partial evaluator which is a program

conforming to the framework of Figure 3.8. This framework for implementing selection allows

for any combination of static and dynamic analysis in the selection strategy. We shall specify

conditions under which this framework will guarantee the termination of partial evaluation and in

Section 4.2 we describe SAGE’s selection strategy in terms of this framework and prove that it

meets the necessary conditions for termination.

Our framework is intended to be used to define the selection strategy for any partial evaluator.

It is based on the assumption that we may divide the selection strategy into a static and dynamic

part. The static part is performed before the partial evaluation takes place and is an analysis of the

program and query to be partially evaluated which deduces information that may be used to guide

the dynamic aspect. The dynamic aspect of the selection strategy is implemented as a selection

function of the kind described in Section 3.4.4.

First we define the basic components of a general selection strategy. Using these we present

algorithms for the static and dynamic parts of a generic selection strategy for partial evaluation.

Partial evaluations may be computed with respect to a set of predicate symbols which it is permitted

to unfold. This set of predicates will often be specified by the user. As in [3], we refer to this as

the set of selectable predicates.

Definition Let L be a set of predicate symbols. We say a literal is L-selectable if its predicate

symbol is in L. We say an SLDNF-tree is L-compatible if the predicate symbol of each selected

literal in the tree (including subsidiary refutations and trees) is in L.

In order to guarantee the correctness of a partial evaluation wrt a set of selectable predicates

L we require the following weak condition.

Definition Let P be a normal program and L a set of predicate symbols. We say L is well-

structured wrt P if, whenever p ∈ L and there exists a path in the dependency graph for P from a

predicate symbol q to p, then q ∈ P .

We assume that any selection strategy must have an underlying rule which specifies the order

in which literals in a resultant may be tested for finite unfolding.

Definition A fundamental selection strategy is a determinate rule which uniquely selects a

literal from some resultant.

A fundamental selection strategy may be a simple ‘leftmost-literal’ rule, or may use sophisticated

determinancy or variable dependency analysis, for example. We use the concept of a fundamental
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selection strategy to define the selection strategy used when termination is not an issue.

Definition Let P be a program, G a goal for this program and T a finite SLDNF-tree for G

wrt P . A predicate symbol p is safe wrt T iff no literals with predicate symbol p appear in any

leaf-node of T . We say a predicate which is not safe is an unsafe predicate.

Intuitively, we say a predicate symbol p is safe in a partial evaluation if every occurrence of a

literal with predicate symbol p may be unfolded in this partial evaluation without risk of an infinite

unfolding. For example, non-recursive predicates are trivially safe.

Definition Let P be a program, A a set of atoms, T the SLDNF-tree used in the partial

evaluation of A wrt P , p a predicate symbol in P and C an independent set of atoms with predicate

symbol p. We say that C is a covering atom for p wrt the partial evaluation of A iff every atom in

a node of T with predicate symbol p is an instance of an atom in C.

Finally we define informally an information-set for a predicate symbol. An information-set for

a predicate symbol p is any data which is used by a dynamic selection strategy in determining

whether it is safe to unfold an atom with predicate symbol p. For example, an ancestor list or the

finite prefoundings of [10] would constitute an information-set for a predicate symbol.

With the above definitions, we present the static part of our generic selection strategy in

Figure 4.1. The static part of a selection strategy computes an abstraction of the partial eva-

luation to be performed. Based on this abstraction the static part determines a subset of the

selectable predicates which will be safe in the subsequent partial evaluation. In addition the static

analysis returns a set of information-sets and covering atoms for the unsafe selectable atoms.

Having performed the static part of the selection strategy, a partial evaluator may proceed to

compute a partial evaluation, using the dynamic part of the selection strategy. The algorithm

for the dynamic part of our generic selection strategy is given by Figure 4.2. The dynamic part

of the selection strategy does not restrict the selection of atoms with safe predicates (unless the

fundamental selection strategy imposes a restriction) and uses the information-sets computed for

the unsafe predicates to determine whether atoms with these predicates may be selected.

In order to guarantee the termination of such a selection strategy we must ensure that it meets

the following conditions:

1. The static analysis must terminate.

2. The static analysis is correct wrt the subsequent partial evaluation. That is to say:

• Unfolding all instances of atoms with predicates in the safe set will not lead to infinite

unfolding in this partial evaluation.

• The covering atoms computed for the unsafe predicates are sufficient to cover all instances

of atoms with these predicates in this partial evaluation.
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Input:

a program P

a goal G

a set Preds of selectable predicate symbols

a fundamental selection strategy Select

Output:

a safe subset of Preds, Safe

a set of information-sets I for predicates in Preds− Safe

a set of covering atoms for atoms with predicates in Preds− Safe

Initialisation

I := ∅

Safe := Preds

A := ∅

Fix := Preds

While Fix 6= Preds− Safe do

Fix := Preds− Safe

compute abstract derivation tree T for ← G, based on strategy Select, information-set I

and set of safe predicate symbols Safe

Unsafe := { p : p deemed unsafe in T }

Safe := Safe− Unsafe

update I on basis of information-set gained from T

I := I ∪ IUnsafe, where IUnsafe = { information-set gained in T for p : p ∈ Unsafe }

A := { covering atoms for p in T : p ∈ Unsafe }

EndWhile

Figure 4.1: Static Selection Algorithm
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Input:

a set Preds of selectable predicate symbols

a subset of Preds, Safe, of safe predicate symbols

a set of information-sets { Ip : p ∈ Preds− Safe }

a fundamental selection strategy Select

a resultant R

Output:

a selected literal A in R

INew, an update of the input set of information-sets

Initialisation

I∗ := input set of information-sets

Success := No

While Success = No and there exist unexamined literals in the body of R do

according to strategy Select, select a Preds-selectable literal, A∗, from the body of R

update I∗ on basis of information-set gained during selection of A∗

If (the predicate symbol of A∗ ∈ Safe or A∗ is selectable according to I∗)

Then

Success := Y es

A := A∗

INew := I∗

EndWhile

Figure 4.2: Dynamic Selection Algorithm
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3. The dynamic analysis must control the unfolding of atoms with an unsafe predicate name in

a manner which guarantees that the unfolding of such atoms will terminate.

4.1.3 Specialising the Selection Strategy

Clearly the above framework is sufficiently general to describe a broad spectrum of selection stra-

tegies. Towards one end of this spectrum we have a mostly dynamic strategy, such as that of [10]

where the static analysis at most identifies non-recursive predicates as being safe and performs a

complex dynamic analysis during partial evaluation that is based upon a well-founded ordering of

the recursive atoms in the partial evaluation. Towards the opposite end of the spectrum we have

a selection strategy which performs a sophisticated static analysis of the program and query to be

specialised and uses this information to restrict the complexity of the dynamic analysis as far as

possible.

For self-applicability a selection strategy of the former kind is not satisfactory. In specialising

a partial evaluator we would wish to specialise the selection strategy as far as possible. As we have

already described in Section 3.4.4, the dynamic part of any selection strategy cannot be specialised

to any great degree as it relies upon a dynamic analysis of the resultant from which it is attempting

to select a literal and the computation in which it appears. This information is not available at

the time of partial evaluation. However the static part of a selection strategy relies mostly on a

static analysis of the program and query to be partially evaluated. At partial evaluation time we

will certainly know the program we are specialising the partial evaluator with respect to and we

expect to have at least some partial information about the query. Thus the static part of a selection

strategy can be specialised at least to a significant degree, if not fully.

To construct a selection strategy for a partial evaluator which is amenable to specialisation we

must therefore seek to produce an implementation of the selection strategy which performs the

greater part of its analysis as a static analysis. Specialising such a selection strategy for a known

program we will remove the majority of this static analysis. This will leave us with a residual

dynamic selection strategy which has been specialised with respect to the known program and is

therefore no more sophisticated than is necessary. This in turn implies that the specialised selection

strategy will be no more computationally expensive than is necessary.

4.2 The Selection Strategy for SAGE

The selection strategy used by SAGE employs a relatively sophisticated static analysis of the

program and query to determine as large a subset as possible of the selectable predicates which

is safe in the subsequent partial evaluation. With such an analysis we are able to avoid entirely

any need for dynamic analysis during partial evaluation. The major advantage of this technique is
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SAGE <-

InputProgram(program) &

InputGoal(goal) &

InputSelectablePredicates(select) &

GetSelectableAtomsInGoal(goal, select, atoms) &

PartialEvaluation(program, atoms, select, script) &

OutputScript(script).

Partial Evaluation(program, atoms, select, script) <-

% Preprocessing.

MakeAtomsIndependent(atoms, atoms1) &

StaticAnalysis(program, atoms1, select, atoms2, danger) &

% Interpretation (PE).

ComputePEs(program, atoms2, select, danger, residuals) &

% Postprocessing.

AssembleScript(program, residuals, script).

Figure 4.3: Pseudo-code for top level of SAGE

evident in the self-application of SAGE, where we are able to specialise the static analysis part to

a large extent. The expense of the dynamic analysis, which cannot be significantly specialised, we

have effectively reduced to nothing.

Figure 4.3 gives a pseudo-code outline for the top-level structure of SAGE, in the framework

of Figure 3.8. A more complete description of this algorithm is given in Figure 4.9. In this

framework Preprocess corresponds to the static analysis performed by SAGE, Postprocess to the

postprocessing optimisations of Section 4.4 and the interpretation performed by Demo1 corresponds

to the partial evaluation of atoms in the query to be specialised. This partial evaluation is itself

closely related to an interpretation and is therefore a subprogram in SAGE which can also be

described in terms of the framework of Figure 3.8. The process of computing partial evaluations

in SAGE may therefore be specialised by SAGE in a similar fashion to the specialisation of the

program in Figure 3.8.

Here we see the advantage for self-applicability of using static analysis as a manner of providing

information that may be used to reduce the dynamic aspect of a partial evaluators selection strategy

for a particular program. As Preprocessmay be specialised in Figure 3.8, so may the static analysis

performed by a partial evaluator be specialised to a very large degree when specialising that partial

evaluator with respect to a particular program.

In the following sections we shall firstly present an informal overview of SAGE’s static analy-



CHAPTER 4. THE ANATOMY OF SAGE 83

sis. We follow this by a more formal presentation which includes a proof of the correctness and

termination of SAGE’s selection strategy and finally we discuss the justification for this particular

strategy.

4.2.1 Overview of Static Selection Strategy for SAGE

In partial evaluation we are increasingly seeing the use of abstract interpretation [1, 14] to provide

flow information to guide a partial evaluation [24, 23, 74] either through a static or dynamic analysis

of the program and query to be specialised. The static analysis performed by SAGE uses techniques

similar to those of abstract interpretation to compute as large as possible a set of predicates which

is safe in the partial evaluation to be performed. An abstraction of the tree used in computing

the partial evaluation is computed and analysed to determine a set of predicates which may be

unfolded while still guaranteeing that the partial evaluation will terminate. We refer to such an

abstract tree as an abstract partial evaluation. Our description of this static analysis closely reflects

its implementation by SAGE. At present this implementation cannot be presented as an abstract

interpretation in the usual sense. Consequently we provide below a self-contained description of

this analysis.

When constructing an abstract partial evaluation tree we must ensure that the selection strategy

employed is equivalent to the strategy that will be employed by the subsequent partial evaluation.

For the abstract partial evaluation to be a correct abstraction of the subsequent concrete partial

evaluation we must ensure that the set of safe predicates is equivalent for both. The static analysis

will repeatedly compute abstract partial evaluations with respect to the most recently computed

set of safe predicates until an abstract partial evaluation is computed during which the set of

safe predicates remains constant. This ensures that the set of safe predicates remains constant

throughout the abstract partial evaluation which abstract the subsequent concrete one. Figure 4.4

illustrates this process and is the top-level algorithm for SAGE’s static analysis.

Our abstract domain consists of abstractions for the set of all ground terms and the set of all

terms. Using this abstract domain we construct an abstract partial evaluation in which by not

unfolding certain recursive predicates we guarantee the termination of all partial evaluations that

are concretisations of this abstract one.

For example, consider the following predicate definition:

Squares([],[]).

Squares([x|l1],[x*x|l2]) <-

Squares(l1,l2).

The predicate Squares is recursive and thus if every atom with this predicate were unfolded in a

partial evaluation then the partial evaluation might not terminate. However, if we consider the
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Input:

a program P

a set Preds of selectable predicate symbols

an abstract goal G

Output:

a set of unsafe predicate symbols Unsafe (Unsafe ⊆ Preds)

a set of covering atoms Covers

Initialisation

A := { A : A is a Preds−selectable atom in G }

Recurs := { p : p ∈ Preds and p is recursive in A wrt P }

Unsafe := ∅

Covers := ∅

Patterns := ∅

Fix := ∅

compute abstract partial evaluation tree T for atoms in A

returning updated values for Unsafe, Patterns and Covers

While Fix 6= Unsafe do

Fix := Unsafe

compute abstract partial evaluation tree T for atoms in A

returning updated values for Unsafe, Patterns and Covers

EndWhile

Figure 4.4: Static Analysis Procedure
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Figure 4.5: Predicate Dependency Graph

abstract partial evaluation of the atom Squares(T1, T2), where T1 is some ground term, then it

is obvious that the repeated unfolding of atoms with this predicate will eventually terminate. In

the case where T1 is an abstraction for the set of all ground terms in the above program then this

analysis tells us that the partial evaluation of any atom with this predicate will terminate whenever

the first argument is a ground term.

To identify recursive predicates in a program we compute a predicate-dependency graph for

the selectable predicates in that program. Recursive predicates may be recursive because they

call themselves directly or because they occur in a cycle in the predicate dependency graph. For

a cycle in a predicate dependency graph we need only to denote only one of the predicates as

being recursive when considering termination, as the example below illustrates. For such a set of

predicates we denote an arbitrary one of them as recursive and the rest as non-recursive.

Example The predicate dependencies for P ∪ {← P}, where P is:

P <- Q & R.

Q <- S & T.

R <- R.

S <- P.

T.

are illustrated by the graph in Figure 4.5. In this graph we have the cycle [P,Q,S] and the recursive

predicate R. We may denote P as being the recursive predicate in the cycle, giving us {P,R} as

the set of recursive predicates for P ∪ {← P}. If we denoted both of these predicates as not being

selectable, then it is obvious that the partial evaluation of any literal in the above program will

terminate.
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4.2.2 Abstract Partial Evaluations

The abstract domain consists of the three elements {⊥,AG,ANG} which are abstractions of the sets

of undefined terms, all ground terms and all terms respectively. We refer to the elements of this

abstract domain as pattern terms. The pattern terms are ordered as ⊥ ≤ AG ≤ ANG.

In the implementation of the static analysis we supplement this abstract domain by a set of

data structures which denote a countable set of variables represented by the terms V(0),V(1),. . . ,

constant and function terms represented as F(name,args) where name is the name of the function

or constant and args is the list of its abstract arguments, a countable set of abstract ground terms

represented as GT(0), GT(1),. . . and a well-founded ordering on the set of abstract ground terms.

We refer to the representation of a term constructed from these data structures as an abstract term

and to the representation of an atom with arguments taken from the set of abstract terms as an

abstract atom.

Definition A variable-free abstract term is an abstract term of the form GT(g) or a term of

the form F(f,a) where the terms in the list a contained no variables.

Abstract substitutions consist of a set of variable to abstract term bindings. Unification of

abstract terms is according to the following rules:

• Variable to term (or similarly, term to variable): variable is bound to term provided that the

variable does not occur in this term, in which case the unification fails.

• Function term F(n1,a1) to function term F(n2,a2): if n1=n2 then unify the two argument

lists a1 and a2, else the unification fails.

• Function term F(n,a) to ground term GT(g): let V be the set of variables which occur in

terms in the list a. For each variable in V add to the current substitution a binding of this

variable to some new abstract ground term and record in the ordering on abstract ground

terms that this new ground term is strictly less than GT(g).

• Ground term GT(g1) to ground term GT(g2): record GT(g1)=GT(g2) in the ordering on

abstract ground terms provided that this does not violate the anti-symmetry of the ordering,

in which case the unification fails.

In the abstract resolution procedure we resolve an atom with abstract arguments with respect to

a statement in the program which has a matching predicate symbol and some currently computed

abstract substitution. This resolution process is implemented in a similar manner to that for

concrete resolution, described in the previous chapter. However, for the sake of conciseness we may

consider the abstract resolution process to be as follows:
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1. Transform statement to abstract representation. This involves replacing all variables by

renamed variables of the form V(n) and replacing all constant and function terms with name

name and arguments a by abstract terms of the form F(name,a1) where a1 is the transformed

list of terms a.

2. Perform the abstract unification of the arguments of the atom with the arguments of the

head of the transformed statement and compose the resulting substitution with the current

abstract substitution.

3. Replace the abstract atom in the current goal by the body of the transformed statement.

Definition Let H ← A1& < . . .&Ai& . . .&An be a resultant, B ← B1& . . .&Bm a statement

and θ the mgu of Ai and B then for each Brθ in (H ← A1& < . . .&B1& . . .&Bm& . . .&An) we

refer to Ai as the immediate parent of Brθ. If two atoms A and B are related by the transitive

closure of the relation immediate parent then we say that A is a direct ancestor of B.

To ensure that the computation of the abstract partial evaluation will itself terminate we adopt

the following strategy for unfolding abstract atoms which have a recursive predicate. We do not

unfold abstract atoms which have a direct ancestor with the same predicate. Instead we compare

the atom with its ancestor in order to determine whether the abstract partial evaluation rooted at

the ancestor atom could be guaranteed to terminate if all atoms with this predicate were unfolded.

If this abstract partial evaluation can be guaranteed to terminate under these conditions then mark

this predicate as being safe, otherwise it is marked as being unsafe. Note that if at any point a

predicate is marked as being unsafe then it cannot subsequently be marked as safe.

Abstract Partial Evaluations: Definitions

Definition Each abstract partial evaluation is rooted at a single atom which we refer to as the

head atom.

Definition Let A be an atom with recursive predicate p and A′ an atom with predicate p that

appears in the non-root node of an abstract partial evaluation rooted at A. We say that A′ is a

recursive occurrence of A.

We include here also an informal definition of the ordering relation between terms in the abstract

domain, the formal definition being introduced later. Let t1 and t2 be abstract terms then we say

that t1 is ordered wrt t2, or t1 is less than t2 if, for every concretisation t′
1
and t′

2
of t1 and t2, t

′
1

and t′
2
are ground terms and the number of function and constant symbols in t′

1
is strictly less than

the number in t′
2
.
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The fundamental selection strategy used by SAGE is a depth-first strategy where we select

the leftmost selectable literal. This fundamental selection strategy is therefore also used when

constructing abstract partial evaluations.

Definition Let A be an abstract atom, T the abstract abstract partial evaluation rooted at A

and S the set of computed abstract substitutions for the leaf nodes on successful branches of T .

We call the set S the complete unfolding of A.

One example of a complete unfolding which will be of interest later is the case in which A is

the leftmost selectable literal in a formula F , R is the abstract formula to the right of A in F and

S = {θ1, . . . , θn} is the complete unfolding of A. Then the complete unfolding of A in F will be

the set of abstract formulas {Rθ1, . . . , Rθn}.

With the above definitions we may now present the algorithm for SAGE’s static analysis. We

first present a simplified algorithm for the computation of abstract partial evaluations. To motivate

the algorithm for the static analysis we shall then highlight the constraints that must be added to

ensure the correctness of the static analysis and also describe some optimisations in its implemen-

tation. This allows us to present the full algorithm for computing abstract partial evaluations and

to describe how this is incorporated into the static analysis.

Abstract Partial Evaluations: Algorithm

An abstract partial evaluation is the abstract partial derivation tree computed from an initial

abstract atom A, a set of selectable predicate symbols L and a subset of L which we refer to as the

safe set S. Note that in the course of computing the abstract partial evaluation some predicates

may be removed from the set S if they are deemed to be unsafe. An ordering on the set of abstract

ground terms is recorded for each node in the tree. At the root node this ordering is empty.

The tree is constructed downwards from the root by the selection and unfolding of atoms

in resultants in the nodes of the tree. At a leaf node of the partly constructed tree we select the

leftmost selectable literal and construct the next part of the abstract tree according to the following

conditions upon the selected literal:

• A literal with a safe recursive predicate which does not match the predicate in the head atom.

Compute an abstract partial evaluation rooted at the atom in this selected literal. Delete

this literal from the resultant in this node.

• A literal with a safe recursive predicate which matches the predicate in the head atom.

Examine this literal with respect to the head atom to determine whether it is safe. Delete

this literal from the resultant in this node.
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• An unsafe literal.

Delete this literal from the resultant in this node.

• A literal with a non-recursive predicate.

Unfold this literal in the current resultant.

To determine whether an atom in a selected literal which is a recursive occurrence of the head

atom is safe we examine the arguments of the recursive occurrence with respect to the head atom.

We seek to determine whether, for some argument position, the corresponding terms in the head

atom and recursive occurrence are both ground and that the term in the recursive occurrence is

ordered with respect to the corresponding term in the head atom. If this is not the case then we

denote this predicate as being unsafe.

Assume that in the above examination we determine that a predicate is safe (or, to be more

precise, is not yet determined to be unsafe). The literal with this predicate is next deleted from the

goal from which it has been selected. This will leave the formula, F , to the right of this literal to

be further unfolded. This indicates that we are next considering the case where we have performed

the complete unfolding of the selected literal. However, it is possible that during this complete

unfolding we may have instantiated some of the variables in F to ground terms and we would wish

to ensure that such instantiations are not lost. Consequently when we determine that a literal with

a recursive predicate is safe we also seek to determine which, if any, of the variables in this literal

will have been bound to ground terms following its complete unfolding.

Example We analyse the unfolding of a call to Squares(T1, T2), where T1 is a ground term,

with respect to the program:

Squares([],[]).

Squares([x|l1],[x*x|l2]) <-

Squares(l1,l2).

In the first (base) case, the second argument is instantiated to a ground term. In the second

(recursive) case, the second argument is instantiated to a term which contains only variables which

also occur in the recursive call (l2, in this case). By induction we deduce that the second argument

in the recursive call will be instantiated to a ground term and so therefore will the second argument

in the original call.

Correctness of Algorithm

The above description tells us how abstract partial evaluations may be computed. Before we

describe in more detail how the above algorithm may be implemented we first describe three

important issues which must be considered for the static analysis to be correct.
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Firstly note in the above description that when a literal with a recursive predicate is selected

the way in which it is treated if the predicate is unsafe will differ from the way it is treated if

the predicate is safe. This reflects a similar difference in the treatment of literals with recursive

predicates in the computation of the subsequent concrete partial evaluation. However, when the

abstract partial evaluation is computed it is possible for a predicate which was marked as safe at the

start of the computation to have been marked as unsafe during the computation. To ensure that

the computed abstract partial evaluation is a correct abstraction of the subsequent concrete partial

evaluation we must ensure that the set of safe predicates is the same throughout the computation of

the abstract partial evaluation. Thus whenever the set of safe predicates is reduced while computing

the abstract partial evaluation we will compute a new abstract partial evaluation with respect to

this new set of safe predicates. As the set of recursive atoms in a program is finite and predicates

marked as unsafe cannot subsequently be marked as safe the eventual termination of this process

is guaranteed.

A second issue which must be considered is what will be done with the predicates which are

determined to be unsafe. In the subsequent concrete partial evaluation literals with unsafe predi-

cates will not be selected for unfolding as they may lead to non-termination. However, during the

computation of the abstract partial evaluation we identify a generalisation of all instances of atoms

with unsafe predicate symbols. We refer to such an atom as a covering atom for an unsafe predicate

and a specialisation of each covering atom is computed during the concrete partial evaluation. Thus

the static analysis must ensure that a correct abstract partial evaluation of each covering atom is

computed.

The final issue that must be considered is under what conditions our ordering relation between

an atom and its recursive occurrence can be considered correct. That is to say, what is the formal

definition which we must give to this ordering relation that will ensure that we are correct to assume

that it implies the termination of the repeated unfolding of ‘ordered’ literals. We introduce these

definitions below and then present the complete algorithm for SAGE’s static analysis.

4.2.3 Computing Abstract Call Patterns

We next introduce the concept of a pattern for a recursive predicate. A pattern is a pair consisting

of an input pattern and an output pattern. The input and output patterns are each abstract atoms

whose arguments are taken from the abstract domain of pattern terms. Patterns are used as an

abstract representation in which the input pattern records the state (either ground or non-ground)

of the arguments of some atom before its unfolding in the subsequent concrete partial evaluation

and the output pattern records the state of those arguments after its complete unfolding. For

conciseness of representation, for a given predicate we may represent the input and output patterns

as the list of pattern terms corresponding to the arguments of the relevant abstract atoms.
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For example , let A be a binary abstract atom with output pattern [AG,ANG], S be the set of

abstract substitutions forming the complete unfolding of A and V be the set of variables occurring

in the first argument of A. Then the fact that the first argument of the output pattern for A is the

pattern term AG indicates that for any substitution in the set S all variables in V will be bound to

variable-free terms.

Just as the domain of our abstract partial evaluation theoretically has abstraction and concreti-

sation functions which map terms in the concrete domain to terms in the abstract domain and vice

versa, we define similar functions for mapping between the domain of abstract partial evaluations

and the domain of patterns. We refer to the abstraction and concretisation functions between these

two abstract domains as matching and applying respectively.

Definition Let A be an abstract atom with recursive predicate p, P a pattern for p. We

say that A matches P iff for each argument of the input pattern for P that is marked AG, the

corresponding argument of A is a variable-free abstract term.

Definition Let A be an abstract atom with recursive predicate p, P a pattern for p. Then

A′, the result of applying the pattern P to A, is the atom obtained by unifying each non-ground

argument of A for which the corresponding argument in the output pattern for P is AG, with some

new abstract term of the form GT(g).

For example, let P be a binary recursive predicate with input pattern [AG,ANG] and output

pattern [AG,AG]. An abstract atom P(T1,T2) would match this pattern iff T1 were a variable-

free abstract term. The result of applying the output pattern for this predicate to the abstract

atom P(GT(0),F(f’,[x,y])) is the atom P(GT(0),(F(f’,[GT(g),GT(g+1)])), where GT(g) and

GT(g+1) are new (abstract) ground terms.

The ordering relation which we use to determine the safeness of some predicate is defined in

terms of the input pattern for that predicate. First we define what it means for one abstract term

to be a strict subterm of another.

Definition Let t1 and t2 be variable-free abstract terms then we say that t1 is a strict subterm

of t2 iff

• either t2 =F(f,a) and either t1 is a member of list a or is a strict subterm of a member of

list a

• or t2 =GT(g2), t1 =GT(g1) and GT(g1) is strictly less than GT(g2) in the ordering on abstract

ground terms.

Definition Let t be a term and a a pattern term then we say that a term t is ordered with

respect to a term t′ and the pattern term a iff a = AG and t is a strict subterm of t′.
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Definition Let A be an atom with recursive predicate p, P a pattern for p, IP the input

pattern for P and A′ a recursive occurrence of A. We say that A′ is ordered wrt A and P iff for

some argument t′ of A′, t′ is ordered wrt the corresponding arguments of A and IP .

Patterns allow us to make a further abstraction in the computation of our abstract partial

evaluations. When computing an abstract partial evaluation which is rooted in some atom with a

recursive predicate we will compute a further abstraction of the arguments of this atom into terms

from the domain {AG,ANG} and a new “most general” abstract atom which matches this pattern.

We then compute the abstract partial evaluation of this most abstract atom and determine which,

if any, of its arguments are guaranteed to have become instantiated to ground terms. This allows us

to construct the output pattern for this most general atom. The advantage of this technique is that

when we subsequently encounter an atom with this predicate while computing the abstract partial

evaluation, we may test to see if this subsequent atom is an instance of the previously computed

pattern. If it is then we do not need to compute the abstract partial evaluation rooted at this new

atom but can simply ‘apply’ the output pattern to the arguments of this atom.

4.2.4 Static Analysis Algorithm

In the static analysis an abstraction of the partial evaluation is computed for each atom to be

partially evaluated. During the static analysis an initial pattern will be constructed for a recursive

predicate on the first time that an atom with this predicate is encountered. This pattern is then

updated whenever we encounter a recursive occurrence of the atom being partially evaluated.

At each node in an abstract partial evaluation we will have a set of patterns for those recursive

predicates marked as safe. The other recursive predicates which have been encountered previously

will be marked as unsafe and each such predicate will have a covering atom. At all points the

atom in the leftmost selectable literal will be selected for unfolding. The following list describes

the unfolding rule for atoms selected in this abstract partial evaluation procedure.

1. First occurrence of a recursive atom.

We construct the input pattern for this atom and compute a new abstract partial evaluation

rooted at this atom.

2. Recursive atom currently marked as safe, with a predicate symbol different from that of the

head atom.

If atom matches some pattern for this predicate

Then apply that pattern to this atom

Else Construct the new input pattern for this atom and compute its abstract partial evalua-

tion.
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3. Recursive occurrence of the head atom.

If atom is ordered wrt current input pattern and head atom

Then compute the new input and output patterns

Else

delete all patterns for this predicate, mark the predicate as unsafe and

If the atom is an instance of the head atom

Then record the head atom as the covering atom for this predicate

Else compute the msg of the head atom and selected atom, record this msg as the covering

atom for this predicate and compute the abstract partial evaluation of this msg.

4. Unsafe atom.

If atom is not an instance of the current covering atom

Then compute the msg of the head atom and selected atom, record this msg as the covering

atom for this predicate and compute the abstract partial evaluation of this msg.

5. Non-recursive atom.

Unfold this atom.

The following text describes the motivation behind each item on the above list in more detail.

In computing these abstract partial evaluations, those selectable atoms with recursive predicates

are given special attention. The first time such an atom is encountered, an abstraction of its

arguments (its input pattern) is computed and a separate abstract partial evaluation is computed

just for this atom. This separate abstract partial evaluation seeks to determine whether the atom

is safe or unsafe. An atom is determined to be safe if we can establish an ordering between at least

one argument of this atom and the corresponding argument in the ancestor atom. If the atom is

safe, then an abstraction of its arguments upon termination of the partial evaluation (its output

pattern) will also be computed.

If a recursive atom is encountered which has previously been marked as safe, with a computed

input and output pattern, then this atom is compared against the previous input pattern. If the

atom matches the input pattern then the output pattern is applied, otherwise a new analysis of

this atom is computed.

An atom which has previously been marked unsafe is not unfolded as this atom will not be

unfolded when SAGE performs the actual partial evaluation. However, a generalisation of this

atom and its previous unsafe occurrence is computed and an abstract partial evaluation of this

generalised atom is computed, as this new generalised atom will be partially evaluated during the

second phase of SAGE’s partial evaluation process. This last step may be avoided if the unsafe

atom encountered is an instance of the atom for which we have already computed the abstract

partial evaluation.
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When a recursive occurrence of some atom is encountered, its arguments are compared to the

matching ancestors arguments. If it can be established that at least one of the arguments in the

recursive atom is of lesser complexity than the matching argument in the head atom then the atom

will be marked as being safe. If no ordering can be established then the atom is marked as being

unsafe. The input pattern is used in ensuring that there must be at least one argument position in

which the relevant terms are strictly decreasing in complexity in all recursive cases.

In the abstract partial evaluation an atom with a predicate symbol which is selectable but not

recursive is simply unfolded with respect to the definition of this predicate.

Example We construct the abstract partial evaluation of <- P(GT(0)) wrt the program:

P(x) <- Q(x,y) & R(y).

Q(F(x),y) <- P(x) & S(y).

R(G(x)) <- R(x).

where the predicates P, R and S are recursive, S has been marked as unsafe with covering atom

S(x) and R has the input pattern [AG]. We first unfold unfold P(GT(0)) to produce the new goal

<- Q(GT(0),y) & R(y). As Q is not recursive unfolding rule 5 says we unfold Q(GT(0),y) to pro-

duce the goal <- P(GT(1)) & S(y) & R(y), where GT(1) is less than GT(0) in the ordering on gro-

und terms. By unfolding rule 3 we see that, as the atom P(GT(1)) is ordered wrt the atom P(GT(0))

then this atom is discarded. By unfolding rule 4 we also discard the atom S(y) leaving the goal

<- R(y). As R(y) does not match the pattern for R then, by unfolding rule 2, we construct

the new input pattern [ANG] for R and compute a new abstract partial evaluation from the goal

<- R(y). Unfolding this goal we see that the next unfolding rule to be applied will be rule 3

and that, as the selected atom will not be ordered wrt the head atom of this new abstract partial

evaluation, R will be marked as unsafe and the pattern for this predicate will be deleted.

4.2.5 Updating Abstract Call Patterns

When computing the abstract partial evaluation of a recursive atom A, the arguments of the input

pattern for A are initially set to AG when the corresponding argument of A is a variable-free term

and ANG otherwise. The arguments of the output pattern for A are initially set to ⊥. The pattern

for A will be modified in one of two cases, either when a branch in the abstract partial evaluation

of A leads to a terminating (or base) case or when a branch leads to a recursive occurrence of

A. When a base case is encountered the output pattern for A is updated using the algorithm of

Figure 4.6. When a recursive occurrence of A is encountered the entire pattern for A is updated

using the algorithm of Figure 4.7.



CHAPTER 4. THE ANATOMY OF SAGE 95

Input:

an atom A

a substitution θ (the answer substitution for this terminating branch

of the abstract partial evaluation of A)

a pattern P for A

Output:

P ′, an updated pattern for A

Initialisation

A′ := Aθ

OP := the output pattern of P

For each argument t of A′ do

If t is an abstract ground term and the corresponding argument of OP is ⊥ or AG

Then

the corresponding argument in O′
P
:= AG

Else

the corresponding argument in O′
P
:= ANG

EndFor

P ′ := P with O′
P
replacing OP

Figure 4.6: Updating Pattern for Base Case



CHAPTER 4. THE ANATOMY OF SAGE 96

Input:

an atom A with predicate symbol p

A′, a recursive occurrence of A

a set of patterns S for p

a particular pattern P ∈ S for A

a set of (unsafe) predicates U

Output:

S ′, the updated set of patterns for p

U ′, the updated set of unsafe predicates

Initialisation

IP := the input pattern of P

OP := the output pattern of P

If A′ is ordered wrt A and P

Then

For each argument a of A′ do

If a is ordered wrt the corresponding arguments in A and IP

Then

the corresponding argument in I ′
P
:= AG

Else

the corresponding argument in I ′
P
:= ANG

If the following are true:

• the corresponding argument of OP is ⊥ or AG

• a contains no variables which do not occur in the corresponding argument of A

Then

the corresponding argument in O′
P
:= AG

Else

the corresponding argument in O′
P
:= ANG

EndFor

P ′ := P with I ′
P
replacing IP and O′

P
replacing OP

S ′ := {P ′} ∪ (S − {P})

U ′ := U

Else

S ′ := ∅

U ′ := U ∪ {p}

Figure 4.7: Updating Pattern for Recursive Case
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Example We illustrate the above process by the abstract partial evaluation of the program:

P([x|y],z) <- Q(x,w) & R(y,w,z).

Q(A,B).

Q(B,C).

R([],x,[x]).

R(x,y,[y|z]) <- P(x,z).

with respect to the abstract goal ←P(T ,v), where T is some abstract ground term. The predi-

cate P is a recursive predicate and so we start our investigation by computing an initial pattern

for it. The initial input pattern for P is [AG,ANG] and we set its output pattern to be [⊥,⊥].

We unfold the atom P(T ,v) in the initial (abstract) resultant P(T ,v)←P(T ,v) to produce the

resultant P(T ,v)←Q(T1,v1) & R(T2,v1,v), where T1 and T2 are both ground subterms of T .

We select the atom Q(T1,v1) in this resultant and unfold it to produce the two new resultants

P(T ,v)←R(T2,B,v) and P(T ,v)←R(T2,C,v). Although SAGE will analyse each of these resul-

tants in turn, we shall only look in detail at the analysis of the first as the resultants are analogous.

We unfold the atom R(T2,B,v) in this resultant to produce the two resultants P(T ,[B])← and

P(T ,[B|v2])←P(T2,v2). For the first resultant we combine the current output pattern for P,

[⊥,⊥], with the terms [T ,[B]] to produce the new output pattern [AG,AG]. In the second resul-

tant we select the atom P(T2,v2). This is a recursive occurrence of the head atom and so we seek

to establish an ordering between these two atoms. As the current input pattern for P is [AG,ANG],

we see that we may only check that the arguments in the first argument position are ordered. As

T2 is a subterm of T we may deduce that the unfolding of this resultant will terminate. We next

combine the current output pattern for P, [AG,AG], with the terms [T2,v2] to produce the new

output pattern. We see that the first argument position is obviously set to AG. The second argument

position we also set to AG, as the head-term, [B|v2], contains no variables that do not occur in the

matching atom term, v2, and the previous output pattern for this argument is AG. As the analysis

of the remaining resultant in this investigation is analogous, we see that we complete the analysis

with P marked as a safe predicate, with input pattern [AG,ANG] and output pattern [AG,AG].

4.2.6 The Dynamic Selection Strategy for SAGE

Although until now we have continually referred to a meta-program as generally selecting literals for

unfolding, we must generalise this somewhat for standard Gödel programs. Statements and goals

in standard Gödel may include arbitrary formulas, committed formulas and conditionals. SAGE

does not restrict selection of a formula for unfolding to literals only. The selected formula may be

an atom, a negated formula, a conditional or a committed formula. The dynamic selection strategy

for SAGE implements a fundamentally leftmost selection strategy with respect to a set of selectable
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predicates L and the following constraints:

Atoms

Selected iff the predicate for this atom is safe and selectable.

Negations

Selected.

Conditionals

Selected.

Committed Formulas

Selected subject to the restriction described below.

As has been described in Section 2.1 implications and equivalences are transformed to a normal

form. This transformation is handled by SAGE’s dynamic selection strategy.

The restriction that SAGE places on the selection of committed formulas is that a committed

formula may be specialised only once in a partial evaluation.

The above restrictions show that SAGE has a very conservative selection strategy for unfolding

atoms with unsafe predicates, although it is precisely the strategy that we need to produce residual

programs of the form presented in Section 3.4. Calls to unsafe atoms will not be unfolded during a

partial evaluation and the specialised definitions of the unsafe predicates are produced by computing

the partial evaluations of the formulas resulting from a single unfolding step performed upon the

covering atom for each unsafe predicate.

This strategy trivially satisfies the final condition for the guaranteed termination of SAGE’s

selection strategy, that the dynamic selection strategy ensure that recursive occurrences of atoms

with unsafe predicates are unfolded only a finite number of times. We next prove that SAGE’s

selection strategy satisfies the first two conditions for termination, that the static part terminates

and is sound.

Definition Let A be an atom. We say that the result of replacing all ground terms in A by an

abstract ground term is the abstraction for A.

Note that if A is some abstract ground atom then A is the abstraction for the set of atoms

{A′ : A′ matches A}.

Lemma 4.2.1 Let P be a Gödel program, A an atom with a recursive predicate p in P , A∗ the

abstraction of A and P a pattern for p computed by the static analysis algorithm of Figure 4.4 such

that A∗ matches P. Then the following conditions hold:

(a) The partial evaluation of A wrt P , using the above dynamic selection strategy, will only unfold
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finitely many recursive occurrences of A.

(b) For all answers θ computed by the partial evaluation of A, the result A′ of applying P to A∗ is

an abstraction of Aθ.

Proof Part (a): Note that, as the static analysis has computed a pattern for p, p is a safe

predicate and therefore the partial evaluation of A will unfold every recursive occurrence of A.

Examining case 3 of the unfolding of atoms in the static analysis it is trivial to see that every

recursive occurrence of A∗ in the abstract partial evaluation of A∗ will be ordered wrt A∗ and P.

Part (a) follows directly.

Part (b): Consider a branch in the tree used to construct the partial evaluation of A, with

computed answer φ. In this branch we will unfold n recursive occurrences of A. The definition of

A may depend upon m other safe recursive predicates, each of which will have its own pattern. We

prove part (b) by a double induction upon m and n.

Case m = 0:

Base case: assume that n = 0, then the static analysis contains a branch in which no recursive

occurrences of A∗ appear. By the algorithm of Figure 4.6 only those arguments of A∗ which are

instantiated to ground terms at this point will be marked as AG in the output pattern for P.

Arguments will be ground for one of the following reasons:

1. This argument was ground in A∗

2. This argument was bound to a ground term during the computation

3. This argument was instantiated to a ground term by the application of some pattern.

As m = 0 and n = 0 then case 3 does not hold in this instance. It is trivial to see that A′ is an

abstraction for Aφ whenever case 1 or case 2 holds for arguments bound to ground terms in A∗.

Inductive case: assume that every recursive occurrence of A in the partial evaluation has a corre-

sponding abstraction which is a recursive occurrence of A∗ in the static analysis. The above three

reasons for determining how a term in A∗ may be bound to a ground term also apply in this recur-

sive case. It is again trivial to see that part (b) is correct whenever cases 1 and 2 hold. As m = 0,

any pattern applied in case 3 will be a recursive occurrence of A∗. By the algorithm of Figure 4.7

only those arguments of A∗ which contain no variables that do not occur in the corresponding

arguments of the recursive occurrences of A∗ will be marked as AG in the output pattern for P.

By the inductive hypothesis, these variables will be ground if the relevant argument in the output

pattern for P is marked AG and therefore the corresponding argument in Aφ will be ground. A′ is

therefore an abstraction of Aφ.

Case m = i+ 1:

The inductive case is a trivial extension of the above inductive proof for the base case.
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Theorem 4.2.2 Let P be a Gödel program, G a goal for P and L a set of selectable predica-

tes. The static analysis algorithm of Figure 4.4 of G wrt P and L terminates, returning a set of

predicates S and a set of atoms M for which:

(a) S is safe wrt the partial evaluation of G wrt P , using the above dynamic selection strategy.

(b) M = {p(t̃) : p ∈ L − S} is a set of covering atoms for the unsafe atoms in the above partial

evaluation.

Proof Let A be the set of L-selectable atoms in G. We give the proof for the case when A

consists of a single atom F . The extension to the general case is straightforward. First we prove

the termination of the static analysis algorithm.

It is trivial that computing the predicate dependency graph for F will terminate.

The computation of an abstract partial evaluation of F terminates if recursive occurrences of

any atom with a recursive definition are only unfolded a finite number of times. To prove this we

must first define an ordering on atoms in an abstract partial evaluation with the same predicate

symbol. We define a termination function µ from atoms into the well-founded set of non-negative

integers under <.

We define µ in terms of the mapping µ∗ as:

µ∗(P(t1, . . . , tn)) = µ′(t1) + . . .+ µ′(tn), where P(t1, . . . , tn) is an atom

with the inductive definition for µ′:

µ′(t) = 1, where t is a variable or a constant

µ′(F(t1, . . . , tn)) = µ′(t1) + . . .+ µ′(tn) + 1, where F(t1, . . . , tn) is a function term.

Let v(A) be the number of distinct variables in an atom A, then we define µ(A) = µ∗(A)−v(A)

We note that given two atoms, A1 and A2, with the same predicate symbol such that A2 is not

an instance of A1, where µ(A1) = m and µ(A2) = n, then it is trivial that k < m and k ≤ n, where

k = µ(A∗) and A∗ is the msg of A1 and A2.

Let A be an atom, selected at some point in the abstract partial evaluation, T , with head atom

H. We say that an atom B is a descendant of A in T if B appears in the subtree of T rooted at A.

To prove that the abstract partial evaluation T is finite we must prove that, following the selection

of A, we only unfold atoms with the same predicate symbol as A a finite number of times. For each

of the cases for unfolding A we prove that if we select an atom A′, where A′ is a descendant of A

in T with a matching predicate symbol, then µ(A′) < µ(A).

1. A is the first occurrence of some recursive atom.

An abstract partial evaluation of A is computed. Cases 3-5 below prove the finiteness of the

unfolding of atoms with some predicate symbol p when the head atom also has predicate

symbol p.
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2. A is a recursive atom currently marked as safe with a predicate symbol other than H’s.

If A matches some pattern for this predicate

Then A is not unfolded

Else An abstract partial evaluation of A is computed. Cases 3-5 below prove the finiteness of

the unfolding of atoms with some predicate symbol p when the head atom also has predicate

symbol p.

3. A is a recursive occurrence of H.

If A is ordered wrt H and current input pattern

Then A is not unfolded

Else % A is marked as unsafe

If A is an instance of H

Then A is not unfolded

Else A∗ := the msg of A and H. An abstract partial evaluation of A∗ is computed. It is

trivial to see that µ(A∗) < µ(A)

4. A is already marked unsafe.

If A is not an instance of the current covering atom

Then A∗ := the msg of A and the current covering atom. An abstract partial evaluation of

A∗ is computed. It is trivial that µ(A∗) < µ(A)

5. A is not recursive.

A cannot be repeatedly unfolded.

The recursive loop of the algorithm computes abstract partial evaluations, adding predicates to

the list of unsafe predicates. The termination condition for this loop is that the number of unsafe

predicates so computed is the same as for the previous abstract partial evaluation. As there are

only finitely many recursive predicates in P and no predicate may be marked as safe once it is

marked as unsafe, the algorithm will terminate.

Next we prove the soundness of the algorithm. First we prove that, having terminated, a final

abstract partial evaluation, T , has been computed, for which the following conditions have been

met:

Condition 1: For each recursive predicate in the set of safe predicates S such that an atom with

this predicate appears in T there are a set of patterns, P, for this predicate such that every

atom in T with this predicate matches some pattern in P.

Condition 2: For each unsafe predicate the set of covering atoms contains an atom, C, with this

predicate. Every atom in T with this predicate (including recursive calls of atoms with this

predicate in the abstract partial evaluation of C) is an instance of C.
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To meet the terminating condition for the static analysis, no predicates can have been marked as

unsafe during the computation of T . Consider an atom, A, that has been selected for unfolding

at some point in T . For each of the cases for unfolding A we prove that the above two conditions

have been met.

1. A is the first occurrence of some recursive atom.

A pattern, P, is computed for A and an abstract partial evaluation of A is computed. A will

not be marked as unsafe and therefore P will not be deleted. It is trivial that A matches P

and therefore condition 1 is satisfied. As A is safe, condition 2 is trivially satisfied.

2. A is a recursive atom currently marked as safe with a predicate symbol other than that of

the head atom.

If A matches some pattern for this predicate

Then condition 1 is satisfied. As A is safe, condition 2 is trivially satisfied.

Else A new pattern, P, is computed for A and an abstract partial evaluation of A is computed.

A will not be marked as unsafe and therefore P will not be deleted. It is trivial that Amatches

P and therefore condition 1 is satisfied. As A is safe, condition 2 is trivially satisfied.

3. A is a recursive occurrence of the head atom.

A cannot be marked as being unsafe, therefore A must be ordered wrt H and the current

input pattern. Therefore A matches the current input pattern and condition 1 is satisfied.

As A is safe, condition 2 is trivially satisfied.

4. A is already marked unsafe.

If A is not an instance of the current covering atom

Then the new covering atom, A∗, is the msg of A and the current covering atom. All

previously encountered atoms with the same predicate symbol as A are instances of the

current covering atom and are therefore instances of A∗. A is also an instance of A∗ and

therefore condition 2 is satisfied. As A is unsafe, condition 1 is trivially satisfied.

5. A is not recursive.

The two conditions are trivially satisfied.

Part (a) follows directly from condition 1 above and lemma 4.2.1.

Part (b) follows directly from condition 2 above.

4.2.7 Justifying SAGE’s Selection Strategy

A general outline of the justification for SAGE ’s selection strategy is as follows. When partially

evaluating meta-programs we generally find that key arguments to the meta-programs, mostly



CHAPTER 4. THE ANATOMY OF SAGE 103

the ground representations of programs or theories, are ground. Many recursive predicates in

meta-programs, particularly those we would seek to unfold, are recursive by the nature of the

fact that they process complex terms. These predicates are recursive because they are called

recursively on subterms of the term or terms they process. The fact that these key arguments are

ground whenever these predicates are called allows us to deduce that these calls will terminate, as

ground terms are of necessarily finite complexity. The static analysis also seeks to determine which

previously uninstantiated terms will have been instantiated to ground terms at the termination of

these calls. This analysis shares similarities with termination analyses such as those of [44, 48, 75]

and mode-inferencing analyses such as those of [17, 38, 53].

As an example, consider the Gödel meta-interpreter of Figure 4.8, which conforms to the basic

framework of Figure 3.8. This meta-interpreter has the two recursive predicates Demo1 and Select.

The definitions for the Gödel system predicates FormulaMaxVarIndex and ApplySubstToFormula

are recursive and the definition for Resolve, presented in the previous chapter, also relies upon

recursive predicates.

When specialising the above interpreter with respect to a known program and an unknown

goal we see that the above recursive predicates fall naturally into two categories. In the first we

have the predicates Demo1, Select, FormulaMaxVarIndex and ApplySubstToFormula which are

not sufficiently instantiated to be fully unfolded. These predicates would be unsafe in the partial

evaluation of this interpreter. We would therefore not unfold calls with these predicates but would

seek to specialise the definitions of these predicates in a manner which retained their recursive

nature. By contrast, a call to StatementMatchAtom for a known program will return the ground

representation of a statement in this program as its fourth argument. This argument is passed to

the call to Resolve. Examining the definition for Resolve in the previous chapter we see that if the

WAM-like predicates are declared to be non-selectable, then we may unfold all other atoms in the

unfolding of a call to Resolve with respect to a known statement. This unfolding will terminate

returning a single conjunction of WAM-like atoms as the residual code for this call.

When a meta-interpreter interprets the execution of some goal wrt a program we generally find

that we can seperate the various calls made by the interpreter into those that perform some analysis

of the program and those that perform some analysis of the goal. When we partially evaluate a meta-

interpreter wrt an object program the goal that the meta-interpreter is to interpret is unknown.

Naturally therefore it seems obvious that a partial evaluation of a meta-interpreter should seek

to unfold those calls which perform an analysis of the object program and leave as residual those

calls which perform an analysis of the goal. In the static analysis performed by SAGE we have

simply taken advantage of the fact that Gödel uses a ground representation. Thus when a recursive

call in a meta-program is analysing some part of the object program, some significant argument

will be ground in this call. When a recursive call is analysing a part of the goal for this program,
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Demo(program, goal, answer) <-

FormulaMaxVarIndex(goal, var) &

EmptyTermSubst(subst) &

Select(goal, left, selected, right) &

Demo1(selected, program, left, right, var, subst, computed_answer) &

ApplySubstToFormula(goal, computed_answer, answer).

Demo1(None, program, _, _, _, subst, subst).

Demo1(Positive(atom), program, left, right, var, subst_in, subst_out) <-

Atom(goal) &

StatementMatchAtom(program, _, atom, statement) &

Resolve(atom, statement, var, new_v, subst_in, new_subst, body) &

And(left, body, left1) &

And(left1, right, new_goal) &

Select(new_goal, new_left, selected, new_right) &

Demo1(selected, program, new_left, new_right, new_v, new_subst, subst_out).

Select(formula, formula, None, formula) <-

EmptyFormula(formula).

Select(formula, left, selected, right) <-

And(l, r, formula) &

Select(l, l1, s, r1) &

IF s = None

THEN Select(r, left, selected, right)

ELSE left = l1 &

selected = s &

AndWithEmpty(r1, r, right).

Select(formula, empty, Positive(formula), empty) <-

Atom(formula) &

EmptyFormula(empty).

Figure 4.8: A Basic Gödel Meta-Interpreter
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no such argument will be ground. Similar arguments have been made by Sestoft for functional

programs [62].

4.3 The Unfolding Strategy for SAGE

There are four varieties of Gödel formulas which SAGE treats as atomic for the purpose of unfolding.

That is, there are four varieties of formulas which SAGE will not unfold by simply transforming

them to some normal form during selection. These are safe selectable atoms, negated formulas,

conditional formulas and committed formulas. We shall describe SAGE’s treatment of these four

varieties in turn. Firstly however, we briefly present SAGE’s internal representation of the nodes

in the partial evaluation being computed.

4.3.1 A Helpful Representation for Resultants

SAGE represents the nodes in a partial evaluation as resultants whose head is the formula being

specialised and whose body is the current specialised code for this formula. These resultants are

represented by SAGE as terms of the form Res(head,body,s,v,c), where head is the head of the

resultant and body its body. The current substitution for this resultant is stored by s, the current

maximum variable index by v and c stores a list of the augmented labels for the commits appearing

in the body of this resultant. This representation makes explicit all pertinent information for any

node in a SAGE partial evaluation.

4.3.2 Unfolding Atoms

An atom will be either an open or closed atom in a Gödel program, depending on whether its

predicate (or proposition) symbol is declared in an open or a closed module. Having selected

an atom for unfolding, these two mutually exclusive cases are determined by whether a call to

DefinitionInProgram, in the case of an open atom, or DeclaredInClosedModule, in the case of

a closed atom, succeeds.

Open Atoms

A call to DefinitionInProgram will return the definition of the predicate or proposition in an open

atom. SAGE uses a call to ResolveAll to perform an unfolding step for this atom. ResolveAll

returns two lists corresponding to the answer substitutions and resolvents for the successful

unfolding steps. These lists are converted to new resultants in SAGE by a call to

ConstructResultants(b,s,c,h,l,r,v,[],res,res1), where b is the list of resolvents, s the mat-

ching list of substitutions, c the list of commits in the current resultant, h the head of the current
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resultant, l and r the formulas to the right and left respectively of the selected atom in the current

resultant, v the maximum variable index returned by the call to ResolveAll and res and res1

are respectively the list of resultants forming the nodes in the current partial evaluation before and

after this unfolding step.

When constructing the new resultants formed by unfolding an atom in a resultant, SAGE ana-

lyses the resolvents of the unfolding step to detect any new commit labels which may have been

introduced. These commit labels will have been renamed by the call to ResolveAll.

ConstructResultants calls CommitsInFormula to determine all new commits introduced and ap-

pends the relevant augmented commit labels to the current list of commit labels for each resultant.

ConstructResultants([], [], _, _, _, _, _, _, res, res).

ConstructResultants([body|rest], [subst|ss], coms, head, left, right, var, new

, r, [Res(head, body1, subst, var, coms1)|r1]) <-

{CommitsInFormula(body, new, new1, coms, coms1)} &

AndWithEmpty(left, body, body2) &

AndWithEmpty(body2, right, body1) &

ConstructResultants(rest, ss, coms, head, left, right, var, new1, r, r1).

CommitsInFormula(formula, new, new1, coms, coms1) <-

And(left, right, formula) |

CommitsInFormula(left, new, new2, coms, coms2) &

CommitsInFormula(right, new2, new1, coms2, coms1).

CommitsInFormula(formula, new, [C(labl, occ)|new1], coms, [C(labl, occ)|coms1]) <-

Commit(label, formula1, formula) |

IF SOME [occ1, new2] DeleteFirst(C(labl, occ1), new, new2)

THEN occ = occ1+1 &

CommitsInFormula(formula1, new2, new1, coms, coms1)

ELSE occ = 1 &

CommitsInFormula(formula1, new, new1, coms, coms1).

CommitsInFormula(formula, new, new, coms, coms) <-

Atom(formula) \/

Some(_, _, formula) \/

IfSomeThenElse(_, _, _, _, formula) \/

EmptyFormula(formula) \/

IfThenElse(_, _, _, formula) \/

IfSomeThen(_, _, _, formula) \/

IfThen(_, _, formula) \/

Or(_, _, formula) \/

All(_, _, formula) \/

Implies(_, _, formula) \/

IsImpliedBy(_, _, formula) \/
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Equivalent(_, _, formula) \/

Not(_, formula) |.

For example, let A be an atom selected in a SAGE resultant. Let H be the head of the resultant,

L the formula to the left of A, R the formula to the right of A, θ the current substitution and C

the list of (augmented) labels for the commits appearing in this resultant.

We unfold A to return three resolvents, A1, A2 and A3, with respective new substitutions θ1,

θ2 and θ3. If each resolvent contains a committed formula with a commit that has been assigned

the new integer label n, then ConstructResultants will construct the three new SAGE resultants

representing (H ← L&A1&R)θ1, (H ← L&A2&R)θ2 and (H ← L&A3&R)θ3. It will record

the list of augmented commit labels for these resultants as being [C(n,1)|C], [C(n,2)|C] and

[C(n,3)|C] respectively.

Closed Atoms

Closed atoms are unfolded by SAGE with a call to ComputeAll, which returns the new substitutions

and new maximum variable index following the interpretation of this atom in much the same

manner that ResolveAll returns these values after an unfolding step. The major difference between

ComputeAll and ResolveAll is that ComputeAll interprets the computation of the atom in its

second argument up to the step where the computation either succeeds, fails or flounders, where

ResolveAll interprets only a single unfolding step.

The goals returned by ComputeAll will be either empty formulas, in the case of successful

computations, or delayed goals, in the case of floundered computations. As these delayed goals

may later be further instantiated, SAGE will determine the free variables in such goals. A delayed

closed atom may be selected for further unfolding (using ComputeAll) should any of these free

variables become instantiated to a non-variable term later in the partial evaluation.

4.3.3 Unfolding Negated Formulas

As described by the algorithm in Figure 2.1, to unfold a negated formula, ~F , we first compute

a partial evaluation of F . For each residual formula Fi in the partial evaluation of F we must

determine which of the free variables in F have been instantiated. This is accomplished by a

call to GetFormulaBindings(f,subst,bindings) where f is the representation of the formula F ,

subst is the answer substitution computed for the residual formula Fi and bindings is the list of

variable-term pairs for the free variables in F and their bindings in Fi.

GetFormulaBindings(formula, subst, bindings) <-

FormulaVariables(formula, vars) &

BoundVariables(vars, subst, bindings1) &

FilterBindings(bindings1, bindings1, vars, bindings).



CHAPTER 4. THE ANATOMY OF SAGE 108

BoundVariables([], _, []).

BoundVariables([var|rest], subst, bind) <-

(

IF SOME [term] BindingInTermSubst(subst, var, term)

THEN bind = [var @ term|bind1]

ELSE bind = bind1

) &

BoundVariables(rest, subst, bind1).

FilterBindings([], _, _, []).

FilterBindings([var @ term|rest], bindings, vars, bindings1) <-

FilterBindings(rest, bindings, vars, bindings2) &

IF Variable(term)

THEN

(

DeleteFirst(var @ term, bindings, other_bindings) &

IF ( Member(term, vars) \/ Member(_ @ term, other_bindings) )

THEN bindings1 = [var @ term|bindings2]

ELSE bindings1 = bindings2

)

ELSE

bindings1 = [var @ term|bindings2].

GetFormulaBindings performs a filtering operation which ensures that only essential bindings for

the free variables of F are recorded. We refer to a binding which instantiates a free variable in F to

another variable which is not bound elsewhere in F and Fi as an unessential binding. No binding

will be recorded for a free variable in F which is either not instantiated or only appears in a single

unessential binding.

If the partial evaluation for F contains no residual code then F has failed finitely and ~F has

succeeded (without binding any variables). If the partial evaluation for F contains a residual Fi

which is the empty formula and for which there are no essential bindings for the free variables of

F , then ~F has failed safely. In this case the resultant in which ~F appeared will be deleted.

If neither of the above two cases hold then we must construct the residual code for ~F , as

described in Figure 2.1. Given a list of variable-term pairs, a call to MakeBindings constructs the

formula (a conjunction of equality atoms) which records the relevant bindings.

MakeBindings([], bind) <-

NewProgram("Empty", p) &

ProgramPropositionName(p, "", "True", true) &

PropositionAtom(bind, true).
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MakeBindings([b|rest], bind) <-

NewProgram("Empty", p) &

ProgramPredicateName(p, "", "=", 2, equals) &

MakeBindings1(rest, b, equals, bind).

MakeBindings1([], var @ term, equals, bind) <-

PredicateAtom(bind, equals, [var, term]).

MakeBindings1([b|rest], var @ term, equals, bind) <-

PredicateAtom(atom, equals, [var, term]) &

And(atom, bind1, bind) &

MakeBindings1(rest, b, equals, bind1).

The conjunction of equality atoms produced by MakeBindings is conjoined with the residual formula

Fi and negated to produce the residual code for this branch of the computation tree for F . The

residual negated formulas produced from each Fi are conjoined to produce the specialised code for

~F .

For example, if a program contained the following definition for a predicate P:

P(x) <-

Member(x, [A, B, C]) &

Q(x).

and we specialised the formula ~P(x) with respect to this program, where Q was a non-selectable

predicate, SAGE would produce the specialised formula:

~(x = A & Q(x)) & ~(x = B & Q(x)) & ~(x = C & Q(x))

4.3.4 Unfolding Conditional Formulas

In Section 2.1 we stated that a conditional formula of the form IF C THEN T can be considered as

being the formula IF C THEN T ELSE True. For the purposes of partial evaluation we may also

consider conditionals of the form IF C THEN T ELSE E to be the formula IF SOME [] C THEN T

ELSE E. Therefore SAGE needs only consider conditionals of the form IF SOME V C THEN T ELSE

E.

As described by the algorithm in Figure 2.2, to unfold a conditional IF SOME V C THEN T

ELSE E we firstly compute the partial evaluation of the condition C. If this partial evaluation

produces no residuals then C has failed finitely and we proceed to specialise E. If the partial

evaluation produces residuals for C then we construct the specialised condition with a call to

MakeCondition(v,c,r,new), where v is the list of quantified variables V , c is the condition C, r

is the list of residuals of the partial evaluation of C and new is the specialised condition.
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MakeCondition(some, condition, residuals, new_condition) <-

Some(some, condition, condition1) &

FormulaVariables(condition1, vars) &

MakeCondition1(residuals, vars, new_condition).

MakeCondition1([], _, condition) <-

EmptyFormula(condition).

MakeCondition1([Res(_, test, subst, _, _)|rest], vars, condition) <-

BoundVariables(vars, subst, bindings1) &

FilterBindings(bindings1, bindings1, vars, bindings) &

MakeBindings(bindings, bind) &

ApplySubstToFormula(test, subst, test1) &

AndWithEmpty(bind, test1, new_test) &

MakeCondition1(rest, vars, condition1) &

Or(new_test, condition1, condition).

If one of the residual formulas for C is the empty formula and this residual has performed no

essential bindings of free variables in C then the corresponding disjunct of the new condition will

be the formula True. The condition has therefore succeeded safely in at least one case and we

proceed to specialise the formula C∗ & T , where C∗ is the specialised condition.

If neither of the above two cases hold then we specialise T and E. We construct the new then-

part T ∗ and else-part E∗ by calling MakeCondition for the residual code for T and E respectively.

We then construct the residual conditional formula by a call to NewConditional(v,o,c,t,e,f),

where v is the list of variables V , o the original condition C, c the new condition C∗, t the new

then-part T ∗, e the new else-part E∗ and f the new conditional formula.

NewConditional(some, old_test, new_test, new_then, new_else, new_conditional) <-

Some(some, old_test, old_test1) &

FormulaVariables(old_test1, old_free_vars) &

FormulaVariables(new_test, new_vars) &

RemoveFreeVars(old_free_vars, new_vars, new_some) &

IF new_some = []

THEN IfThenElse(new_test, new_then, new_else, new_conditional)

ELSE IfSomeThenElse(new_some, new_test, new_then, new_else, new_conditional).

RemoveFreeVars([], s, s).

RemoveFreeVars([var|rest], some, some1) <-

IF SOME [some2] DeleteFirst(var, some, some2)

THEN RemoveFreeVars(rest, some2, some1)

ELSE RemoveFreeVars(rest, some, some1).

The above code ensures that any new variables local to the new condition appear in the new list



CHAPTER 4. THE ANATOMY OF SAGE 111

of quantified variables for this condition.

For example, given the program:

P(F(x)).

Q(F(x)) <-

Member(x, [A, B, C]).

R(D).

R(x) <-

S(x)

if we specialised the conditional IF P(x) THEN Q(x) ELSE R(x) with respect to this program,

where S was a non-selectable predicate, SAGE would produce the specialised conditional:

IF SOME [y] x = F(y)

THEN ( y = A \/ y = B \/ y = C )

ELSE ( x = D \/ S(x) )

Note that in this example, y is a new variable that has been introduced which is local to the

new condition and new then-part. Therefore y has had to be locally quantified in the residual

conditional. By contrast, the variable x, which was a free variable in the condition of the original

conditional, remains free in the condition of the residual conditional.

4.3.5 Unfolding Committed Formulas

In Section 2.3 we presented an outline of SAGE’s strategy for handling the unfolding of formulas

containing committed formulas. Two issues were dealt with, freeness and regularity. In order to

guarantee the correctness of unfolding without enforcing regularity we noted that an augmented

representation of the labels of commits needed to be implemented.

Handling Regularity

SAGE records the augmented labels of the commits appearing in the body of a resultant as a list

of terms C(n,i,m,j) and C(n,i), where n, i, m and j are integers. A term C(n,i,m,j) (where

m > 0 and j > 0) represents the augmented commit label nm:j
i and a term C(n,i) represents the

augmented commit label n0:0

i . The augmented labels for commits introduced by an unfolding step

are calculated during a call to ConstructResultants, as described above.

Having selected a committed formula, {F}n (with augmented commit label n0:0

i ), from

a resultant R, SAGE computes the partial evaluation of the formula F . The new resultants
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produced by the unfolding of this committed formula are then constructed by a call to

ConstructCommits(r,n,i,m,1,hd,lf,rt,rs,rs1), where r is the list of residual resultants for

the partial evaluation of F , n and i are the integers n and i respectively, m is an integer one greater

then any appearing as a commit label in the current partial evaluation, hd is the head of R, lf

and rt respectively the formulas to the left and right of {F}n in the body of R and rs and rs1

are respectively the list of resultants forming the nodes in the current partial evaluation before and

after this unfolding step.

ConstructCommits([], _, _, _, _, _, _, _, res, res).

ConstructCommits([Res(_, body, s, v, cs)|rest], n, i, m, j, hd, lf, rt, res

,[Res(hd, new_body, s, v, [C(n, i, m, j)|cs])|res1]) <-

Commit(n, body, body1) &

AndWithEmpty(lf, body1, lf1) &

AndWithEmpty(l1, rt, new_body) &

ConstructCommits(rest, n, i, m, j+1, hd, lf, rt, res, res1).

Note that SAGE only permits the unfolding of a committed formula with an augmented commit

label of the form n0:0

i . This ensures that SAGE will only attempt to unfold a committed formula

once in a partial evaluation, as described in Section 2.3.

For example, let the three formulas A1, A2 and A3 be the three residuals for the partial evalua-

tion of a formula {F}n, with augmented commit label C(n,i). If m were the integer one greater then

any appearing as a commit label in the current partial evaluation then the new augmented commit

labels for the three new resultants constructed from A1, A2 and A3 by a call to ConstructCommits

would be C(n,i,m,1), C(n,i,m,2) and C(n,i,m,3) respectively.

Having performed the partial evaluation of some atom, A, SAGE must next construct a matrix

of labels with which to rename the commits in the residual code. This is to ensure that the pruning

in the specialised code for A is correct with respect to the original code for A. SAGE constructs the

matrix of new commit labels used to rename the residual commits with a call to RenameCommits.

RenameCommits(res, matrix) <-

GetAllCommits(res, [], commits, [], sins) &

SumCommits(commits, sums) &

SumCommitsS(sins, sums1, sums) &

RegulateCommits(sums1, 0, [], matrix).

GetAllCommits([], list, list, sin, sin).

GetAllCommits([Res(_, _, _, _, _, coms)|rest], list, list1, sin, sin1) <-

GetCommits(coms, list, list2, sin, sin2) &

GetAllCommits(rest, list2, list1, sin2, sin1).

GetCommits([], list, list, sin, sin).
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GetCommits([C(label, o)|r], list, list1, sin, sin1) <-

IF SOME [found, l2] DeleteFirst(F(label, found), list, l2)

THEN (

IF SOME [n, f1] DeleteFirst(C(o, n), found, f1)

THEN

GetCommits(r, [F(label, [C(o, n+1)|f1])|l2], list1, sin, sin1)

ELSE

GetCommits(r, [F(label, [C(o, 1)|found])|l2], list1, sin, sin1)

)

ELSE GetCommits(r, [F(label, [C(occ, 1)])|list], list1, sin, sin1).

GetCommits([C(label, occ, foo, bar)|r], list, list1, sin, sin1) <-

(

IF SOME [found1, s2] DeleteFirst(F(label, occ, foo, found1), sin, s2)

THEN (

IF SOME [s, f11] DeleteFirst(C(bar, s), found1, f11)

THEN

sin2 = [F(label, occ, foo, [C(bar, s+1)|f11])|s2]

ELSE

sin2 = [F(label, occ, foo, [C(bar, 1)|found1])|s2]

)

ELSE sin2 = [F(label, occ, foo, [C(bar, 1)])|sin]

) &

IF SOME [found, l2] DeleteFirst(F(label, found), list, l2)

THEN (

IF SOME [n, f1] DeleteFirst(C(occ, n), found, f1)

THEN

GetCommits(r, [F(label, [C(occ, n+1)|f1])|l2], list1, sin2, sin1)

ELSE

GetCommits(r, [F(label, [C(occ, 1)|found])|l2], list1, sin2, sin1)

)

ELSE GetCommits(r, [F(label, [C(occ, 1)])|list], list1, sin2, sin1).

RenameCommits calls GetAllCommits to collect the augmented commit labels in the residual code

into sets which are partitioned by distinct augmented labels. These sets are of two kinds. In the

first we group all labels of the form nf :p
a into partitions distinguished by the distinct ni. In the

second set we group all labels of the form nf :p
a into partitions distinguished by the distinct nf :p

i .

Calls to SumCommits and SumCommitsS then compute the sizes of these partitioned sets.

SumCommits([], []).

SumCommits([F(label, found)|rest], [S(label, found, sum, mods)|sums]) <-

SumCommits1(found, [], mods, 1, sum) &

SumCommits(rest, sums).
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SumCommitsS([], s, s).

SumCommitsS([F(l, o, f, found)|rest], [S(l, o, f, found, s, m)|sums], sums1) <-

SumCommits1(found, [], m, 1, s) &

SumCommitsS(rest, sums, sums1).

SumCommits1([], mods, mods, sum, sum).

SumCommits1([C(_, n)|rest], mods, mods1, sum, n*sum1) <-

IF n = 1

THEN SumCommits1(rest, mods, mods1, sum, sum1)

ELSE IF SOME [m, mods2] DeleteFirst(Mod(n, m), mods, mods2)

THEN SumCommits1(rest, [Mod(n, m+1)|mods2], mods1, sum, sum1)

ELSE SumCommits1(rest, [Mod(n, 1)|mods], mods1, sum, sum1).

Having grouped the commit labels into sets of common labels and computed the sizes of these

sets the matrix of new integer labels for each augmented commit are then generated with a call to

RegulateCommits. For each commit label RegulateCommits calls Regulate which uses a modulo-

arithmetic method to generate labels which perform the relevant pruning on the groups of common

labels.

RegulateCommits([], _, matrix, matrix).

RegulateCommits([S(l, fd, sum, mods)|r], z, mx, [M(l, reg)|mx1]) <-

Regulate(fd, z, next, sum, mods, reg) &

RegulateCommits(r, next, mx, mx1).

RegulateCommits([S(l, o, f, fd, sum, mods)|r], z, mx, [M(l, o, f, reg)|mx1]) <-

Regulate(fd, z, next, sum, mods, reg) &

RegulateCommits(r, next, mx, mx1).

Regulate([], _, 0, _, _, []).

Regulate([C(o, n)|rest], z, Max(next, next1), sum, mods, [Labels(o, ls)|mx]) <-

(

IF n = 1

THEN mods1 = mods &

GenerateIntegers(z+1, z+sum, labels1, []) &

ls = [labels1] &

next1 = z+sum

ELSE DeleteFirst(Mod(n, m), mods, mods2) &

mods1 = [Mod(n, m-1)|mods2] &

GenerateLabels(n, (n^(m-1)*(n-1)), z, 1, sum, n^(m-1), ls) &

next1 = z+n*m

) &

Regulate(rest, z, next, sum, mods1, mx).
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GenerateLabels(0, _, _, _, _, _, []) <-

|.

GenerateLabels(n, mod, zero, occ, sum, m, [labels|rest]) <-

n > 0 |

GenerateIntegers(zero+occ, zero+occ+m-1, labels, labels1) &

GenerateRest(occ+m+mod, zero, sum, m, mod, labels1, []) &

GenerateLabels(n-1, mod, zero, occ+m, sum, m, rest).

GenerateRest(from, zero, sum, m, mod, labels, labels1) <-

from =< sum |

GenerateIntegers(zero+from, zero+from+m-1, labels, labels2) &

GenerateRest(from+m+mod, zero, sum, m, mod, labels2, labels1).

GenerateRest(from, _, sum, _, _, labels, labels) <-

from > sum |.

GenerateIntegers(n, n, [n|rest], rest) <-

|.

GenerateIntegers(n, m, [n|rest], rest1) <-

n < m |

GenerateIntegers(n+1, m, rest, rest1).

Having determined the necessary renamings for the augmented labels in the specialisation

of A, SAGE constructs the residual code for the partial evaluation of A with a call to

ReconstructResultants(r,m,[],s), where r are the residual resultants for A, m the matrix of

new commit labels for these resultants and s the specialised code for A.

ReconstructResultants([], _, []).

ReconstructResultants([Res(hd, body, s, _, _, cs)|rest], matrix, [f|rest1]) <-

ApplySubstToFormula(hd, s, head) &

GetComs(cs, matrix, matrix1, labels) &

ReconstructBody(body, s, labels, body1) &

IsImpliedBy(head, body1, f) &

ReconstructResultants(rest, matrix1, rest1).

GetComs([], matrix, matrix, []).

GetComs([C(label, occ)|rest], matrix, matrx1, [New(label, labels)|rest1]) <-

DeleteFirst(M(label, labels1), matrix, m2) &

GetLabels(labels1, labels2, occ, labels) &

GetComs(rest, [M(label, labels2)|m2], matrx1, rest1).

GetComs([C(label, o, f, b)|rest], matrix, matrx1, [New(label, labels)|rest1]) <-

DeleteFirst(M(label, labels1), matrix, m2) &
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GetLabels(labels1, labels2, o, labelsU) &

DeleteFirst(M(label, o, f, labelsS1), [M(label, labels2)|m2], m3) &

GetLabels(labelsS1, labelsS2, b, labelsS) &

Append(labelsU, labelsS, labels) &

GetComs(rest, [M(label, o, f, labelsS2)|m3], matrx1, rest1).

We give below sufficient of the definition of ReconstructBody to give an illustration of its imple-

mentation.

ReconstructBody(formula, subst, coms, formula1) <-

And(l, r, formula) |

ReconstructBody(l, subst, coms, l1) &

ReconstructBody(r, subst, coms, r1) &

AndWithEmpty(l1, r1, formula1).

ReconstructBody(formula, _, _, formula) <-

EmptyFormula(formula) |.

ReconstructBody(atom, subst, _, atom1) <-

Atom(atom) |

ApplySubstToFormula(atom, subst, atom1).

ReconstructBody1(formula, subst, coms, formula1) <-

Commit(label, f1, formula) |

MemberCheck(New(label, labels), coms) &

ReconstructBody(f1, subst, coms, formula2) &

MakeCommits(labels, formula2, formula1).

ReconstructBody(f1, subst, coms, formula1).

MakeCommits([], formula, formula).

MakeCommits([label|rest], formula, formula1) <-

MakeCommits(rest, formula, formula2) &

Commit(label, formula2, formula1).

Handling Freeness

As discussed in Section 2.3, the freeness condition essentially states that a partial evaluator should

not be permitted to perform any pruning during a partial evaluation. We have described certain

circumstances under which the freeness condition may be disabled. This is represented in SAGE

by a flag which is set to the constant Free if freeness is enabled and Prune if pruning is permitted.

This flag is set to Free by default.

Having unfolded a committed formula in a resultant R, SAGE will construct the new resultants

with a call to MakeCommit(r,n,m,m1,f,hd,lf,rt,rs,rs1), where r is the list of residual resultants

for the partial evaluation of the committed formula, n is the augmented commit label for this
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formula, m is an integer one greater than any appearing as a commit label in the current partial

evaluation, m1 the new value for m after this unfolding step, f is the free/prune flag, hd is the head

of R, lf and rt respectively the formulas to the left and right of {F}n in the body of R and rs

and rs1 are respectively the list of resultants forming the nodes in the current partial evaluation

before and after this unfolding step.

MakeCommit initially calls SingleCommit. If pruning is permitted then we may perform a

pruning step if any of the residuals for the committed formula is the empty formula and no essential

variable bindings have been made in that residual. In this case SingleCommit will return an integer

pointer to one of these residuals. Otherwise this pointer is set to a null value, -999. If a pruning step

cannot be performed then MakeCommit will call ConstructCommit to construct the new resultants,

otherwise a call to ExecuteCommit will perform the relevant pruning step.

MakeCommit(residuals, C(n, i), m, m1, free, hd, lf, rt, res, res1) <-

SingleCommit(free, residuals, catch) &

IF catch = -999

THEN ConstructCommits(residuals, n, i, m, 1, hd, lf, rt, res, res1) &

m1 = m+1

ELSE ExecuteCommit(catch, residuals, n, i, hd, lf, rt, res, res1) &

m1 = m.

SingleCommit(Free, _, -999).

SingleCommit(Prune, residuals, catch) <-

SingleCommit1(residuals, 1, catch).

SingleCommit1([], _, -999).

SingleCommit1([Res(head, body, subst, _, _)|rest], n, catch) <-

GetFormulaBindings(head, subst, bind) &

IF EmptyFormula(body) & bind = []

THEN catch = n

ELSE SingleCommit1(rest, n+1, catch).

ExecuteCommit(1, [Res(_, _, subst, v, cs)|_], n, i, hd, lf, rt, res

, [Res(h, body, subst, v, cs)|res1]) <-

| AndWithEmpty(lf, rt, body) &

Prune(res, n, i, res1).

ExecuteCommit(st, [_|rest], n, i, hd, lf, rt, res, res1) <-

st > 1 |

ExecuteCommit(st-1, rest, n, i, hd, lf, rt, res, res1).

Prune([], _, _, []).

Prune([Res(head, body, subst, var, coms)|rest], n, i, res) <-
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IF Cut(coms, n, i)

THEN Prune(rest, n, i, res)

ELSE res = [Res(head, body, subst, var, coms)|res1] &

Prune(rest, n, i, res1).

Cut([C(n, j)|_], n, i) <-

i ~= j.

Cut([C(n, j, _, _)|_], n, i) <-

i ~= j.

Cut([_|rest], n, i) <-

Cut(rest, n, i).

4.4 Assembling The Residual Script

In Section 2.6 we discussed the reasons which required that the specialised version of a Gödel

program be represented as a script. In this section we describe the postprocessing optimisati-

ons performed by SAGE and explain in more detail how these results are incorporated into the

construction of the residual script.

Having performed the partial evaluation of a program, SAGE is left with a set of atoms and their

partial evaluations. The following steps are performed in order to assemble the residual program

from the original program and this set:

1. Convert original program to a script

2. Optimise residual code

3. Update DELAY declarations

4. Update predicate and proposition declarations

5. Replace original code with partially evaluated code

4.4.1 Converting Programs to Scripts

Converting the original program to a script, where <program> is the term representing the ob-

ject program, is performed by the call ProgramToScript(<program>,script). The predicate

ProgramToScript is defined in the Gödel system module Scripts. Having created a script ba-

sed upon the original program, SAGE is then able to optimise the residual code and perform any

necessary modifications to declarations in the script before replacing the original code with the

optimised, specialised code.
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4.4.2 Optimising Residual Code

In general we expect to have constructed the partial evaluation of a set of atoms that define the spe-

cialisation of predicates in the original program to particular calls. Generally, certain arguments

of these atoms are instantiated to non-variable terms before they are specialised. For example

in a meta-interpreter with top level predicate Demo we may have specialised this interpreter to

a particular object program by partially evaluating the atom Demo(<program>,query,answer),

where <program> is the term representing the object program. The representation of an object

program will generally be a very large term and is likely to be redundant (not utilised) in the

residual code. We may therefore delete this term. To delete such a term we would replace the

ternary predicate Demo with a new binary predicate, Demo 1 say, where any computed answer for

Demo 1(query,answer) would be equivalent to that computed for Demo(<program>,query,answer).

In addition to the above, non-ground non-variable terms in the partially evaluated atoms

may also be removed from the residual code. If the meta-interpreter in the above example say,

were specialised to a particular object program and a particular class of queries for that pro-

gram, for example by specialising the atom Demo(<program>,Atom(P’,[x,y,z]),answer), where

Atom(P’,[x,y,z]) is the representation of the atom P(arg1,arg2,arg3) with meta-variables in

the place of its arguments, then instances of this Demo atom could be replaced by instances of the

atom Demo 1(x,y,z,answer) in the specialised meta-interpreter.

We compute a pattern for the optimisation of a partially evaluated atom with a call to

OptimiseArgs(a,t,p,[],type), where a is the list of arguments of the atom in question, t the

variable typing for these arguments (that is, the set of pairs of variables in this atom and the type

inferred for that variable), p the computed optimising pattern for this atom and type the list of

types of the new arguments for the optimised atom.

OptimiseArgs([], _, [], types, types).

OptimiseArgs([arg|rest], typing, [p|pattern], types, types1) <-

IF GroundTerm(arg)

THEN p = Del(arg) &

OptimiseArgs(rest, typing, pattern, types, types1)

ELSE OptimiseTerm(arg, typing, p, types, types2) &

OptimiseArgs(rest, typing, pattern, types2, types1).

OptimiseTerm(term, typing, Arg, [type|rest], rest) <-

Variable(term) |

BindingInVarTyping(typing, term, type).

OptimiseTerm(term, typing, F(functor, args), types, types1) <-

FunctionTerm(term, functor, args1) |

OptimiseArgs(args1, typing, args, types, types1).
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The pattern computed for a list of arguments consists of a list of pattern terms. A pattern term is

one of either Del(term), indicating a ground term term, Arg, indicating a variable or F(name,args),

indicating a function term with name name and arguments the list of pattern terms args. For

example, the computed pattern for the term Atom(P’,[x,y,z]) would be

F(Atom’,[Del(P’),F(.’,[Arg,F(.’,[Arg,F(.’,[Arg,Nil’])])])]), where .’ and Nil’ were

the names of the representations of the list constructor and the empty list respectively.

We optimise the residual code by replacing every occurrence of an instance of a partially

evaluated atom (that is, any atom which matches the computed pattern) by an equivalent in-

stance of the optimised atom. We perform this optimisation by first optimising the heads of the

statements in the partial evaluation of the atom to be optimised. Next we optimise all instances of

this atom in the bodies of the statements forming the residual code for the partial evaluation. We

perform this optimisation with a call to ChangeBody(b,c,b1), where b is the body of a residual

statement, c the list of patterns for all the optimised atoms and b1 the body of the optimised

statement. We give an illustrative section of the code for ChangeBody here.

ChangeBody(body, changes, new_body) <-

And(left, right, body) |

ChangeBody(left, changes, left1) &

ChangeBody(right, changes, right1) &

And(left1, right1, new_body).

ChangeBody(body, changes, new_body) <-

PredicateAtom(body, pred, args) |

IF SOME [pattern, new_pred, new_args]

( Member(Change(pred, new_pred, pattern, _, _, _), changes) &

ChangeArgs(args, pattern, new_args, []) )

THEN NewAtom(new_args, new_pred, new_body)

ELSE new_body = body.

ChangeBody(body, _, body) <-

EmptyFormula(body) |.

ChangeArgs([], [], args, args).

ChangeArgs([arg|rest], [pattern|rest1], new_args, new_args1) <-

ChangeTerm(pattern, arg, new_args, new_args2) &

ChangeArgs(rest, rest1, new_args2, new_args1).

ChangeTerm(Del(term), term, new_args, new_args).

ChangeTerm(Arg, term, [term|new_args], new_args).

ChangeTerm(F(functor, pattern), term, new_args, new_args1) <-

FunctionTerm(term, functor, args) &

ChangeArgs(args, pattern, new_args, new_args1).
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NewAtom([], prop, atom) <-

PropositionAtom(atom, prop).

NewAtom([arg|rest], pred, atom) <-

PredicateAtom(atom, pred, [arg|rest]).

The list of patterns for the optimised args is a list of terms of the form Change(n,n1,p, , , ),

where n is the name of a predicate, n1 the new name for the optimised predicate atoms and p the

pattern for the atoms to be optimised. The remaining arguments of these Change terms record

information pertaining to the type and control declarations for the optimised atoms.

For example, the atom Demo(<program>,Atom(P’,[A’,B’,C’]),answer) in the above

example, where A’, B’ and C’ are the representations of constants, would be replaced by

Demo 1(A’,B’,C’,answer). As the set of partially evaluated atoms is independent we are as-

sured that no atom in either the original program or the residual code will be an instance of more

than one atom in the set of optimising patterns.

The advantages of performing such optimisations, which are relatively straightforward and

simple to implement, are that removing redundant terms will significantly improve the performance

of the specialised program by cutting down on unification and the use of heap-space and it will also

permit argument indexing to a greater depth than in the original program. This latter advantage is

illustrated by the previous example, where indexing may be performed upon the arguments in the

representation of the query, as opposed to being performed upon the representation of the query.

4.4.3 Updating Declarations

Having performed the above optimisations SAGE must also update the predicate declaration

and any matching DELAY declarations. These optimisations are performed by a call to

UpdateDelays(d,c,n,p,d1,c1), where d and c are respectively the (possibly empty) list of delays

and the corresponding list of conditions for the atom to be optimised, n the new name of the op-

timised predicate atom, p the pattern for this optimised atom and d1 and c1 are respectively the

new list of delays and the corresponding new list of conditions for the new atom.

UpdateDelays([], [], _, _, [], []).

UpdateDelays([atom|rest], [cond|rest1], pred, pattern, delays, conds) <-

PredicateAtom(atom, _, args) &

{

IF SOME [args1, cond1] UpdateArgs(args, pattern, 0, _, args1, [], cond, cond1)

THEN NewAtom(args1, pred, atom1) &

delays = [atom1|delays1] &

conds = [cond1|conds1]

ELSE delays = delays1 &

conds = conds1
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} &

UpdateDelays(rest, rest1, pred, pattern, delays1, conds1).

UpdateArgs([], [], var, var, args, args, cond, cond).

UpdateArgs([arg|rest1], [pattern|rest2], var, var1, args, args1, cond, cond1) <-

UpdateTerm(pattern, arg, var, var2, args, args2, cond, cond2) &

UpdateArgs(rest1, rest2, var2, var1, args2, args1, cond2, cond1).

UpdateTerm(Del(term), term1, var, var, args, args, cond, cond1) <-

EmptyTermSubst(empty) &

UnifyTerms(term, term1, empty, _) &

TermVariables(term1, vars) &

DelVarsInCond(vars, cond, cond1).

UpdateTerm(Arg, term, var, var, [term|args], args, cond, cond).

UpdateTerm(F(functor, pattern), term, var, var1, args, args1, cond, cond1) <-

IF Variable(term)

THEN CreateArgs(pattern, var, var1, args, args1, vars, []) &

UpdateCondition(cond, term, vars, cond1)

ELSE FunctionTerm(term, functor, args2) &

UpdateArgs(args2, pattern, var, var1, args, args1, cond, cond1).

Where a ground argument has been removed from an atom, any variables in the corresponding

argument in the delay may be removed from the condition. This is performed by a call to

DelVarsInCond(v,c,c1), where v is the list of variables to be deleted, c a condition and c1

this condition with all occurrences of these variables removed.

DelVarsInCond([], cond, cond).

DelVarsInCond([var|rest], cond, cond1) <-

UpdateCondition(cond, var, [], cond2) &

DelVarsInCond(rest, cond2, cond1).

UpdateCondition(cond, var, vars, cond1) <-

AndCondition(c1, c2, cond) |

UpdateCondition(c1, var, vars, c3) &

UpdateCondition(c2, var, vars, c4) &

AndCondition(c3, c4, cond1).

UpdateCondition(cond, var, vars, cond1) <-

OrCondition(c1, c2, cond) |

UpdateCondition(c1, var, vars, c3) &

UpdateCondition(c2, var, vars, c4) &

OrCondition(c3, c4, cond1).

UpdateCondition(cond, var, vars, cond1) <-
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GroundCondition(var1, cond) |

IF var1 = var

THEN GrindVars(vars, cond1)

ELSE cond1 = cond.

UpdateCondition(cond, var, _, cond1) <-

NonVarCondition(var1, cond) |

IF var1 = var

THEN TrueCondition(cond1)

ELSE cond1 = cond.

GrindVars([], cond) <-

TrueCondition(cond).

GrindVars([var|rest], cond) <-

GrindVars1(rest, var, cond).

GrindVars1([], var, cond) <-

GroundCondition(var, cond).

GrindVars1([var|rest], var1, cond) <-

GrindVars1(rest, var, cond2) &

GroundCondition(var1, cond1) &

AndCondition(cond1, cond2, cond).

If the pattern contains a function term then a call to CreateArgs recreates the function term from

which this pattern is derived. This function term may then be compared against the corresponding

term in the delay.

CreateArgs([], var, var, args, args, vars, vars).

CreateArgs([arg|rest], var, var1, args, args1, vars, vars1) <-

CreateTerm(arg, var, var2, args, args2, vars, vars2) &

CreateArgs(rest, var2, var1, args2, args1, vars2, vars1).

CreateTerm(Del(_), var, var, args, args, vars, vars).

CreateTerm(Arg, var, var+1, [term|args], args, [term|vars], vars) <-

VariableName(term, "v", var).

CreateTerm(F(_, pattern), var, var1, args, args1, vars, vars1) <-

CreateArgs(pattern, var, var1, args, args1, vars, vars1).

For example, if the atom Demo(<program>,Atom(P’,[x,y,z]),answer) with declaration:

PREDICATE Demo : Program * Formula * TermSubst.

DELAY Demo(p,q,a) UNTIL GROUND(p) & GROUND(q).

were optimised to produce the new atom Demo 1(x,y,z,answer) then SAGE will replace the above

declaration with:
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PREDICATE Demo_1 : Term * Term * Term * TermSubst.

DELAY Demo_1(x,y,z,a) UNTIL GROUND(x) & GROUND(y) & GROUND(z).

In Section 2.2 we also described how polymorphic type declarations for predicates may also need

to be specialised. This specialisation is performed by SAGE at this point, on both optimised and

non-optimised predicates. The new type declaration for a partially evaluated atom may be inferred

simply by computing the variable typing for the optimised version of the partially evaluated atom.

4.4.4 Assembling the Script

Having performed the above optimisations, SAGE next deletes the definitions of all predicates

for which a partial evaluation of an atom with this predicate has been produced. The partially

evaluated code and the relevant declarations, updated as above, are then inserted and finally the

representation of this new script is output to the text file specified by the user.

4.5 Termination and Correctness of SAGE

In this final section we outline the proofs for the guaranteed termination of SAGE and the correc-

tness of the partial evaluations performed by SAGE.

4.5.1 Termination of SAGE

By Theorem 4.2.2 a static analysis computed by SAGE will terminate. Part (a) of Theorem 4.2.2

guarantees that the subsequent partial evaluation computed by SAGE will be finite and the com-

putation of this partial evaluation will therefore terminate. The post-processing optimisations

described in the previous section are based upon a straightforward syntactic analysis of the resi-

dual code produced by the partial evaluation and a trivial examination of this process demonstrates

its termination. These components are the sum of SAGE and therefore the execution of SAGE will

terminate.

4.5.2 Correctness of SAGE

In Chapter 2, Theorem 2.3.2 extended Theorem 3.2 of [29] to cover the non-regular unfoldings of

c-programs performed by SAGE. Theorem 3.2 is the extension of Theorem 4.3 of [47] from normal

programs to c-programs. We now prove that the partial evaluations computed by SAGE meet the

preconditions of Theorem 2.3.2.

The preconditions of Theorem 2.3.2 state that for SAGE’s partial evaluation of a goal G wrt a

program P to be correct, SAGE must compute a partial evaluation, P ′, of a finite, independent set

of atoms A such that P ′ ∪G is A-covered.
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Input

A c-program P

A goal G

A set of selectable predicate symbols L which is well-structured wrt P

Output

P ′, the partial evaluation of P wrt the L-selectable atoms in G

Initialisation

Find the set A′ of L-selectable atoms in G.

% These atoms may appear in either a positive or negative literal in G.

While there exist a pair of atoms A1, A2 in A′ such that

A1 and A2 have a common instance do

A′ := (A′ − {A1, A2})∪{A}, where A is the most specific generalisation of A1 and A2

EndWhile

Compute the static analysis of A′ wrt P and L returning S, a safe subset of L,

and A′′, the set of covering patterns for the unsafe predicates

A := (A′ − {A : A ∈ A′ and A has an unsafe predicate symbol})∪A′′

Compute the partial evaluations of A wrt P , L and S

P ∗ := P − {C : C is the definition of predicate p and p ∈ L}

Assemble P ′ as the residual script based on P ∗ and the above partial evaluations.

Figure 4.9: Algorithm for SAGE
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Figure 4.9 outlines the top-level algorithm of SAGE for the specialisation of a goal G wrt a

c-program P and set of selectable predicates L which is well-structured wrt P .

The goal G is finite and any pairs in A′ which have a common instance are replaced by their

msg. By Theorem 4.2.2 the static analysis will terminate returning a finite set of atoms, each with

a distinct predicate symbol. It is trivial to see therefore that A will be a finite independent set

of atoms. We now show that the partial evaluation P ′ computed by SAGE is such that P ′ ∪ G is

A-covered.

Let P ∗ be the subprogram of P ′ consisting of the definitions of predicate symbols in P ′ upon

which G depends. P ′ ∪ G will be A-covered iff P ∗ ∪ G is A-closed. If an atom in A has a safe

predicate symbol then its only instances in P ∗ ∪G will be in G. It is trivial to see that all atoms

in G with this predicate symbol will be instances of A. If an atom A in A has an unsafe predicate

symbol then by part (b) of Theorem 4.2.2 A is a covering pattern for this predicate and therefore

every atom in P ∗ ∪G with this predicate is an instance of A.

The correctness of SAGE now follows directly from Theorem 2.3.2.



Chapter 5

Results and Conclusions

In this final chapter we present the results obtained by specialising a range of meta-programs with

SAGE, including SAGE itself. We then discuss the contributions that this thesis makes to logic

programming and its relation to other work in the field. Finally we suggest profitable areas for

future research.

5.1 Results

In this section we present the results of specialising Gödel meta-programs with SAGE by compa-

ring the runtimes of unspecialised and specialised programs. We deal with each of the Futamura

projections in turn.

5.1.1 The First Futamura Projection

For the first Futamura projection we have used SAGE to specialise a theorem-prover, a simple

SLD-interpreter and a coroutining interpreter to a range of object programs.

The ModelElimination Theorem Prover

The program ModelElimination is a model elimination theorem prover simplified for the defi-

nite case. This program was based upon a similar theorem prover developed by de Waal in [15].

As the Gödel system module Theories was not fully implemented at the time of writing this

program, we have represented a theory via the representation of a Gödel program. For example, a

sentence S in a theory T may be represented as the statement Hook <-S in the program representing

T . We may represent arbitrary first-order sentences S in this way as Gödel allows arbitrary formulas

as the bodies of statements. In ModelElimination the three predicates Prop, Clause and NegGoal

were used in place of the proposition Hook.

127
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MODULE ModelElimination.

IMPORT Model, ProgramsIO.

PREDICATE Go : String * String * Integer * String * String.

Go(prog_string, goal_string, depth_bound, answer_string, proof_string) <-

FindInput(prog_string++".prm", In(stream)) &

GetProgram(stream, theory) &

MainModuleInProgram(theory, module) &

StringToProgramFormula(theory, module, goal_string, [goal]) &

StringToProgramFormula(theory, module, "NegGoal(a)", [neg_goal]) &

StringToProgramFormula(theory, module, "Clause(a)", [clause]) &

StringToProgramFormula(theory, module, "Prop(a)", [prop]) &

EmptyTermSubst(sub_in) &

EmptyFormula(pr) &

StandardiseFormula(goal, 0, var, goal1) &

Demo(theory, module, neg_goal, clause, prop, goal1, depth_bound,

sub_in, sub_out, var, _, pr, proof) |

ApplySubstToFormula(goal1, sub_out, answer) &

ProgramFormulaToString(theory, module, answer, answer_string) &

ProgramFormulaToString(theory, module, proof, proof_string).

EXPORT Model.

PREDICATE Demo : Program * String * Formula * Formula * Formula * Formula

* Integer * TermSubst * TermSubst * Integer * Integer

* Formula * Formula.
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LOCAL Model.

IMPORT Programs.

Demo(_, _, _, _, _, r, _, s, s, i, i, pr, pr) <-

EmptyFormula(r)|.

Demo(ot, m, ng, c, p, r, db, s_in, s_out, i_in, i_out, pr_in, pr_out) <-

And(left, right, r) |

Demo(ot, m, ng, c, p, left, db, s_in, s1, i_in, i1, pr_in, pr1) &

Demo(ot, m, ng, c, p, right, db, s1, s_out, i1, i_out, pr1, pr_out).

Demo(ot, m, ng, c, p, r, db, s_in, s_out, i_in, i_out, pr_in, pr_out) <-

db > 1 &

Atom(r) |

Theory(ot, m, ng, c, p, r, new_r, db-1, s_in, s1, i_in, i1, pr_in, pr1) &

IF EmptyFormula(new_r)

THEN

s_out = s1 &

i_out = i1 &

pr_out = pr1

ELSE

Demo(ot, m, ng, c, p, new_r, db-1, s1, s_out, i1, i_out, pr1, pr_out).

PREDICATE Theory : Program * String * Formula * Formula * Formula * Formula

* Formula * Integer * TermSubst * TermSubst * Integer

* Integer * Formula * Formula.

Theory(ot, m, _, _, p, r, new_r, db, s_in, s_out, i_in, i_out, l, l_1) <-

db > 1 &

StatementMatchAtom(ot, m, p, hook) &

IsImpliedBy(proof, axiom, hook) &

SplitHeadBody(axiom, head, new_r1) &

IsImpliedBy(head, new_r1, st) &

Resolve1(st, r, i_in, i_out, s_in, s_out, new_r) &

AndWithEmpty(l, proof, l_1).

Theory(ot, m, _, c, _, r, new_r, db, s_in, s_out, i_in, i_out, l, l_1) <-

db > 2 &

StatementMatchAtom(ot, m, c, hook) &

IsImpliedBy(proof, axiom, hook) &

SplitHeadBody(axiom, head, new_r1) &
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IsImpliedBy(head, new_r1, st) &

Resolve1(st, r, i_in, i_out, s_in, s_out, new_r) &

AndWithEmpty(l, proof, l_1).

Theory(ot, m, ng, _, _, r, new_r, db, s_in, s_out, i_in, i_out, l, l_1) <-

db > 2 &

StatementMatchAtom(ot, m, ng, hook) &

IsImpliedBy(proof, axiom, hook) &

SplitHeadBody(axiom, head, new_r1) &

IsImpliedBy(head, new_r1, st) &

Resolve1(st, r, i_in, i_out, s_in, s_out, new_r) &

AndWithEmpty(l, proof, l_1).

PREDICATE SplitHeadBody : Formula * Formula * Formula.

SplitHeadBody(axiom, head, body) <-

IF Literal(axiom)

THEN

EmptyFormula(body) &

head = axiom

ELSE

And(h, b, axiom) &

SplitHeadBody(h, head, body1) &

And(body1, b, body).

PREDICATE Resolve1 : Formula * Formula * Integer * Integer

* TermSubst * TermSubst * Formula.

Resolve1(st, r, i_in, i_out, s_in, s_out, new_r) <-

Atom(r) |

Resolve(r, st, i_in, i_out, s_in, s_out, new_r).

Resolve1(st, r, i_in, i_out, s_in, s_out, new_r) <-

Not(not_r, r) |

IsImpliedBy(head, body, st) &

Not(not_head, head) &

IsImpliedBy(not_head, body, not_st) &

Resolve(not_r, not_st, i_in, i_out, s_in, s_out, new_r).

When this program was specialised with respect to a given object theory all predicates other
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than StandardiseFormula, ApplySubstToFormula and the WAM-like predicates were marked as

being selectable in the partial evaluation. The predicate Demo was marked as unsafe by SAGE’s

static analysis.

The SLD Interpreter

MODULE SLD.

IMPORT Solve, ProgramsIO.

PREDICATE Demo : String * String * String.

Demo(program_string, body_string, answer_string) <-

FindInput(program_string++".prm", In(is)) &

GetProgram(is, program) &

MainModuleInProgram(program, module) &

StringToProgramFormula(program, module, body_string, [body]) &

StandardiseFormula(body, 0, var, body1) &

EmptyTermSubst(empty_substitution) &

Solve(body, program, var, _, empty_substitution, answer) &

ApplySubstToFormula(body1, answer, answer_body) &

ProgramFormulaToString(program, module, answer_body, answer_string).

The program SLD is a simple SLD-interpreter for definite Gödel programs which do not import

any system modules. It imports the module Solve which contains the code presented in Figure 3.3.

When SLD was specialised with respect to a given object program all predicates other than

StandardiseFormula, ApplySubstToFormula and the WAM-like predicates were marked as being

selectable in the partial evaluation. The predicate Solve was marked as unsafe by SAGE’s static

analysis.

The Coroutine Interpreter

The program Coroutine is a more sophisticated SLD-interpreter which emulates a coroutining

behaviour by interpreting the DELAY declarations for the object program that it interprets. The

predicate CanRunAtom determines whether an atom matches its corresponding delay declarations.

CanRunAtom corresponds closely to the system predicate RunnableAtom, the major difference being

that CanRunAtom may be specialised by SAGE with respect to the delay declarations for a given
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MODULE Coroutine.

IMPORT Conc, ProgramsIO.

PREDICATE Go : String * String * String.

Go(program_string, body_string, answer_string) <-

FindInput(program_string++".prm", In(is)) &

GetProgram(is, program) &

MainModuleInProgram(program, module) &

StringToProgramFormula(program, module, body_string, [body]) &

StandardiseFormula(body, 0, var, body1) &

EmptyTermSubst(empty) &

EmptyFormula(e) &

MySucceed(body1, program, var, _, e, e, empty, answer) &

ApplySubstToFormula(body1, answer, answer_body) &

ProgramFormulaToString(program, module, answer_body, answer_string).

object program. This specialisation is similar to the specialisation of Resolve wrt to the statements

in an object program.

EXPORT Conc.

PREDICATE MySucceed : Formula * Program * Integer * Integer * Formula * Formula

* TermSubst * TermSubst.
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LOCAL Conc.

IMPORT Programs.

BASE Bind.

FUNCTION ! : xFx(200) : Term * Term-> Bind.

PREDICATE MySucceed : Formula * Program * Integer * Integer * Formula * Formula

* TermSubst * TermSubst.

MySucceed(formula, _, var, var, _, _, answer, answer) <-

EmptyFormula(formula) |.

MySucceed(formula, program, var, var1, l, r, answer_so_far, answer) <-

Atom(formula) |

StatementMatchAtom(program, _, formula, clause) &

Resolve(formula, clause, var, new_var, answer_so_far,

new_answer, new_body) &

(

IF EmptyFormula(new_body)

THEN AndWithEmpty(l, r, nb)

ELSE AndWithEmpty(l, new_body, nb1) &

AndWithEmpty(nb1, r, nb)

) &

Select(nb, new_answer, program, l1, s1, r1) &

MySucceed(s1, program, new_var, var1, l1, r1, new_answer, answer).

PREDICATE Select : Formula * TermSubst * Program * Formula * Formula * Formula.

Select(formula, _, _, formula, formula, formula) <-

EmptyFormula(formula) |.

Select(formula, subst, program, left, selected, right) <-

And(l, r, formula) |

IF SOME [l1, s1, r1] Select(l, subst, program, l1, s1, r1)

THEN

left = l1 &

selected = s1 &

AndWithEmpty(r1, r, right)

ELSE
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Select(r, subst, program, l1, selected, right) &

AndWithEmpty(l, l1, left).

Select(formula, subst, program, empty, formula, empty) <-

Atom(formula) |

EmptyFormula(empty) &

CanRunAtom(program, formula, subst).

PREDICATE CanRunAtom : Program * Formula * TermSubst.

CanRunAtom(program, atom, sss) <-

PredicateAtom(atom, predicate, _) &

ProgramPredicateName(program, module, _, _, predicate) &

IF SOME [heads, conditions, n]

( ControlInProgram(program, module, predicate, heads, conditions) &

Length(heads, n) & n > 0 )

THEN

GetDelay(heads, conditions, atom, sss).

PREDICATE GetDelay :

List(Formula) * List(Condition) * Formula * TermSubst.

GetDelay([head|_], [condition|_], atom, subst) <-

InstanceOfHead(head, atom, subst, sss) &

ConditionSatisfied(condition, sss).

GetDelay([_|rh], [_|rc], atom, sss) <-

GetDelay(rh, rc, atom, sss).

PREDICATE InstanceOfHead : Formula * Formula * TermSubst * List(Bind).

InstanceOfHead(head, atom, subst, bind) <-

PredicateAtom(head, name, head_args) &

PredicateAtom(atom, name, args) &

InstanceOfHead2(head_args, args, subst, [] , bind).

PREDICATE InstanceOfHead1 : Term * Term * List(Bind) * List(Bind).

InstanceOfHead1(head_arg, arg, b, [head_arg ! arg|b]) <-

Variable(head_arg) |.

InstanceOfHead1(head_arg, arg, subst, subst) <-

ConstantTerm(head_arg, name) |

ConstantTerm(arg, name).
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InstanceOfHead1(head_arg, arg, subst, new_subst) <-

FunctionTerm(head_arg, name, head_args) |

FunctionTerm(arg, name, args) &

InstanceOfHead3(head_args, args, subst, new_subst).

PREDICATE InstanceOfHead2 : List(Term) * List(Term) * TermSubst

* List(Bind) * List(Bind).

InstanceOfHead2([], [], _, subst, subst).

InstanceOfHead2([head_arg|head_args], [arg|args], sss, subst, new_subst) <-

ApplySubstToTerm(arg, sss, arg1) &

InstanceOfHead1(head_arg, arg1, subst, subst1) &

InstanceOfHead2(head_args, args, sss, subst1, new_subst).

PREDICATE InstanceOfHead3 : List(Term) * List(Term) * List(Bind) * List(Bind).

InstanceOfHead3([], [], subst, subst).

InstanceOfHead3([head_arg|head_args], [arg|args], subst, new_subst) <-

InstanceOfHead1(head_arg, arg, subst, subst1) &

InstanceOfHead3(head_args, args, subst1, new_subst).

PREDICATE ConditionSatisfied : Condition * List(Bind).

ConditionSatisfied(cond, subst) <-

IF SOME [var] GroundCondition(var, cond)

THEN Member(var ! term, subst) &

GroundTerm(term)

ELSE

IF SOME [cond1,cond2] OrCondition(cond1, cond2, cond)

THEN OrConditionSatisfied(cond1,cond2, subst)

ELSE

IF SOME [cond1,cond2] AndCondition(cond1, cond2, cond)

THEN ConditionSatisfied(cond1, subst) &

ConditionSatisfied(cond2, subst)

ELSE

IF SOME [var] NonVarCondition(var, cond)

THEN Member(var ! term, subst) &

NonVariable(term)

ELSE IF TrueCondition(cond)

THEN True

ELSE False.
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PREDICATE OrConditionSatisfied : Condition * Condition * List(Bind).

OrConditionSatisfied(cond, _, subst) <-

ConditionSatisfied(cond, subst).

OrConditionSatisfied(_, cond, subst) <-

ConditionSatisfied(cond, subst).

When Coroutine was specialised with respect to a given object program all predicates

other than StandardiseFormula, ApplySubstToFormula, ApplySubstToTerm, GroundTerm,

NonVariable and the WAM-like predicates were marked as being selectable in the partial eva-

luation. The predicates MySucceed and Select were marked as unsafe by SAGE’s static analysis.

Results

The table in Figure 5.1 indicates the speedups computed by comparing the execution times of the

unspecialised meta-programs and their specialised versions. That is to say, the first column of

figures gives the execution time of the query I(P,Q), for a meta-program I, object program (or

theory) P and query Q. The second column of figures gives the execution time for the query IP (Q),

where IP is the specialised program SAGE produces when specialising I to P . The last column

gives the speedup computed by comparing the execution times of I(P,Q) and IP (Q).

In this table we present the results of specialising the theorem prover ModelElimination with

respect to two small definite theories, specialising the interpreter SLD with respect to a program

for matrix transposition and a program which computes Fibonacci numbers and specialising the

interpreter Coroutine with respect to a sorting program that uses the British Museum (or permu-

tation) sort and a program for computing solutions to the eight queens problem. As an attempt

to illustrate the potential speedups for larger object programs, such as meta-programs, which have

a significant proportion of variable arguments in the heads of statements we added five redundant

arguments to the statements in the Fibonacci program.

To give an indication of the relative speedups achieved by specialising the ground representation

in the manner described in Chapter 3, Table 5.1 indicates the speedups gained for those parts of

the relevant meta-program which perform interpretation. That is, the initial calls to Demo, Solve

and MySucceed for ModelElimination, SLD and Coroutine respectively.

For the two meta-interpreters SLD and Coroutine we have been able to estimate that the

interpreted programs (Transpose, Fibonacci, BM-Sort and EightQueens) execute at between 100

and 200 times slower than when they are executed at the object level. In the results described
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Runtime

Example Program (I : P ) I(P,Q) IP (Q) Speedup

Model Elimination: T1 22.56s 0.29s 77.79

Model Elimination: T2 26.19s 0.35s 74.83

SLD: Transpose (8x8) 2.94s 0.14s 21.00

SLD: Transpose (8x16) 5.80s 0.23s 25.21

SLD: Fibonacci (10) 11.68s 0.13s 89.85

SLD: Fibonacci (15) 118.34s 1.13s 104.73

SLD: Fibonacci (17) 347.85s 2.84s 122.48

Coroutine: BM-Sort(7) 2.98s 0.14s 21.29

Coroutine: BM-Sort(13) 14.08s 0.52s 27.08

Coroutine: EightQueens 5.12s 0.21s 24.38

Figure 5.1: The First Futamura Projection

by the above table we have found that a corresponding comparison for the specialised interpreters

indicates that they will execute at approximately 4-6 times slower for SLD and 7-8 times slower for

Coroutine when compared to the relevant object programs.

The main residual expense in the specialised interpreters is incurred by the residual calls to

the WAM-like predicates. The current implementation of these predicates is reasonably efficient,

allowing us to produce specialised meta-programs with an execution time comfortably within one

order of magnitude of the execution time of the object programs which they interpret. It is con-

ceivable that with a suitable implementation of the WAM-like predicates the above results could

be improved yet further, leading to specialised meta-programs which would interpret object pro-

grams in a time comparable to executing them directly at the object level. We describe the current

implementation of the WAM-like predicates in Appendix A.

5.1.2 The Missing Link

Specialising meta-programs by the first Futamura projection can be relatively straightforward and

indeed has been performed many times before in a range of languages. The meta-programs specia-

lised in the previous section are relatively simple programs and therefore not particularly difficult

to specialise. When we consider the self-application of SAGE we are specialising a meta-program

that consists of approximately five thousand lines of Gödel code and the task is therefore much

more difficult.

An additional complication in the self-applicability of SAGE has been the fact that Gödel is a
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language that is still under development. In fact the development of SAGE has often run ahead of

the implementation of Gödel. For example, the original implementation of SAGE was completed

long before the ground representation was implemented in Gödel and therefore SAGE could not be

tested for some time after it was first implemented.

The implementation of the ground representation proceeded in stages with the first simple

meta-programs being able to execute by May of 1992. The first implementation of the ground re-

presentation was extremely slow, mostly due to the inefficient implementation of the representation

of substitutions. It was at this time that the current implementation of substitutions described in

Appendix A was developed.

The first implementation of the ground representation did not support the system predicates

Compute and ComputeAll, which are necessary to specialise closed Gödel code. Consequently several

months passed before Gödel would allow SAGE to specialise any programs which either imported

Gödel system modules or used the equality predicate, =. We shall discuss below further problems

that have arisen from the implementation of Compute.

The system module Scripts supports the representation of the residual scripts constructed

from a partial evaluation. However, this module was not implemented until May of 1993 and until

that time the results of a partial evaluation performed by SAGE had to be constructed by hand

into something resembling an executable Gödel program. Obviously this was impractical when the

partially evaluated program was of a significant size and therefore we have only relatively recently

been able to experiment with the self-application of SAGE.

To date, complications such as those above have, frustratingly, prevented us from testing fully

the self-application of SAGE. Instead a cut-down version of SAGE has been implemented. The

main differences between this partial evaluator and SAGE are that the smaller partial evaluator:

• uses a simplified version of SAGE’s static analysis

• does not specialise committed formulas in the manner described in Chapter 2

• does not specialise conditional formulas to their fullest extent.

We refer to this smaller partial evaluator as SAGEC . In the next section we describe in more

detail the differences between SAGEC and SAGE and present our preliminary results in the self-

application of SAGEC .

Before we present our results for the second and third Futamura projections we discuss the

three main deficiencies of the current implementation of Gödel which affect the self-application of

SAGE. The first is the fact that the current implementation of Gödel does not support the full

commit. The second is the residual inefficiencies that can be caused by Gödel’s delay conditions

and, particularly, its implicit delays. The third is the implementation of the Gödel system predicate

Compute and the affect that this has on partial evaluation.
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The Full Commit

The current implementation of Gödel does not support the full commit operator. Commits in

Gödel programs and scripts are therefore restricted to bar commits and single-solution commits

only. Consequently SAGE cannot implement the unfolding of committed formulas in the manner

of Section 2.3. As a result we have implemented a reduced version of SAGE, SAGEC , which simply

removes all commits from the residual code to ensure correctness.

Although SAGEC removes commits from the residual code, this has little effect in the residual

scripts for the meta-programs in the previous section. In these programs the commits are used

exclusively to prune failed computation when a choicepoint has been introduced by the use of

the ground representation. For example, when the definition for the predicate VarsInTerm1 from

Chapter 3 with commits added:

VarsInTerm1(term,vars,[term|vars]) <-

Variable(term) |.

VarsInTerm1(term,vars,vars) <-

ConstantTerm(term,name) |.

VarsInTerm1(term,vars,vars1) <-

FunctionTerm(term,name,args) |

VarsInTerm2(args,vars,vars1).

is specialised, SAGEC produces the residual definition:

VarsInTerm1(Var(v,n),vars,[Var(v,n)|vars]).

VarsInTerm1(CTerm(name),vars,vars).

VarsInTerm1(Term(name,args),vars,vars1) <-

VarsInTerm2(args,vars,vars1).

In the original definition for VarsInTerm1 the commits were used to prune mutually exclusive

cases. In the residual definition the symbols in the ground representation have been promoted into

the heads of the statements and the Gödel system is able to perform first-argument indexing on

this definition. Consequently the commits are now superfluous and the efficiency of the residual

code has not been impaired by their removal.

When we consider the self-application of SAGEC a significant proportion of the commits in

SAGEC will be used in similar situations to that described above. Therefore the removal of these

commits does not impair the efficiency of the specialised code for SAGEC . However, not all of the

commits in SAGEC are used in this way. For example, at several stages SAGEC records variable

bindings as a list of pairs Var("v",n) ! t. As at most one binding is recorded per variable, a call

Member(Var("v",1) ! value,list) for example, where list is a ground list, can have at most

one solution. However, the definition of Member is such that all elements of the list will be tested

even after the correct element has been found. To avoid this redundant computation we would
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place this call within a single-solution commit. Once SAGEC is specialised however, this commit

would be removed and the redundant computation would be re-introduced.

Until the full commit operator is implemented in Gödel and we are able to consider the self-

application of SAGE, the results of the self-application of SAGEC will suffer due to the inefficiency

of computing failing computations which could have been pruned in the original code.

Delays in Gödel

Delays in Gödel are of two kinds. The first are explicit delays provided by the DELAY declarations

for a program. The second are implicit delays which appear most notably in negated formulas and

conditionals. We shall discuss the impact that each of these kinds of delays has on the efficiency of

residual code in turn.

SAGE (and SAGEC) does not heed DELAY declarations for open code while computing partial

evaluations. From the point of view of self-applicability the author-defined delays in SAGE have

little or no effect on the results of its self-application. However, the closed code of any program

cannot be specialised and thus the DELAY declarations for this code remains in the residual script.

These delays are an expense which we could potentially significantly reduce by an analysis of the

variable dependencies in a statement.

For example, consider the following definition in a specialised meta-program:

ManyUnifies(term, subst, new_subst) <-

UnifyTerms(term, T1, subst, subst1) &

UnifyTerms(term, T2, subst1, subst2) &

UnifyTerms(term, T3, subst2, subst3) &

UnifyTerms(term, T4, subst3, subst4) &

UnifyTerms(term, T5, subst4, new_subst).

DELAY ManyUnifies(x,y,_) UNTIL GROUND(x) & GROUND(y).

where T1-T5 were the ground representations of terms. The DELAY declaration for the system

predicate UnifyTerms delays a call until the first three arguments are ground. In the above example

the second argument to each call is already ground. The first argument is equivalent for each call

and therefore need only be checked once to see if it is ground. Knowledge of the implementation

of UnifyTerms tells us that a call will terminate with the fourth argument instantiated to some

ground term. Consequently, if we could safely assume knowledge of the computation rule, we could

produce an optimised definition for ManyUnifies in which the above DELAY declaration is the only

delay that would affect the computation of such a call. The delays for the calls to UnifyTerms

could be entirely removed.
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When we consider that the representation of a substitution may potentially record several

thousand variable bindings and that the terms that these variables are bound to may be extremely

large and complex, we can see that an optimisation such as the example above could significantly

reduce the computation time of the residual code.

Implicit delays appear most notably in negated formulas and conditionals. Gödel’s current com-

putation rule will delay a negated formula and the formula in the condition of a conditional until

the free variables in that formula are all ground. This is a strong restriction which could be opti-

mised in the above manner, analysing the dependencies of the relevant free variables to determine

whether this delay could be either relaxed or removed. This would be particularly beneficial in the

specialised code for a call to ResolveAll. In a call to ResolveAll the subsidiary calls to Resolve

appear as the conditions of conditional formulas and thus will suffer from the expense of the implicit

delays on conditionals. Previous work in the analysis of variable-dependencies [32, 48, 52, 53] may

be applied here.

For a range of meta-programs we have estimated that in an unspecialised meta-program the

expense of the explicit and implicit delays will cause that program to execute at approximately

15–20% slower than if there were no delays. When the meta-program is specialised a significant

proportion of these delays remain in the residual code and their expense remains as a constant

factor.

For example, let us say that a meta-program P executes in 115 seconds of cpu-time, of which

some 15 seconds is caused by either explicit or implicit delays. We could specialise P to reduce by

a factor of 25, say, the expense of using the ground representation. However, this reduction does

not apply to the delays in P and therefore the runtime in cpu-seconds of the specialised version of

P would be (115 − 15)/25 + 15 = 19 seconds. Thus the speedup for the specialised version of P

appears to be only 115/19 = 6.1 times (approximately).

As we have stated, the residual expense of author-defined DELAY declarations in SAGE is mini-

mal. However, the expense of explicit delays in closed code and the implicit delays, particularly in

conditional formulas, is a significant overhead in the residual code for the self-application of SAGE.

Gödel’s implementation of these explicit and implicit delays and the potential for their removal

through some form of static analysis are therefore very important issues that must be addressed

before the full potential of the self-application of SAGE may be realised.

Compute and Closed System Modules

The predicates Compute and ComputeAll were originally developed to support SAGE as comple-

ments to the predicates Resolve and ResolveAll. Just as Resolve performs renaming wrt the

integers in its third and fourth arguments, so does Compute perform renaming wrt the integers in

its third and fourth arguments. Similarly, where Resolve has the substitutions before and after
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resolution as its fifth and sixth arguments, so does Compute have the substitutions before and after

computation as its fifth and sixth arguments. Just as ResolveAll calls Resolve repeatedly to

perform all possible resolutions, so does ComputeAll call Compute repeatedly to return all possible

computations.

The major difference between Resolve and Compute is that Resolve may only be used on the

open code of a Gödel program. Compute was originally implemented to address this deficiency by

emulating the interpretation of some goal wrt a Gödel program. ComputeAll is used by SAGE to

specialise closed atoms as far as possible.

To correctly emulate the Gödel computation rule Compute must respect any relevant delays

when emulating the execution of a goal wrt some program. Compute implements this by returning

as its seventh argument the last goal in the computation. This last goal will be empty if the original

goal succeeded and non-empty if it floundered.

The implementation of Compute has been particularly problematical as it is a most sophisticated

predicate and there are two aspects of this implementation which adversely affect the efficiency of

the partial evaluations computed by SAGE. The first of these is to do with the implementation of

most Gödel system modules as closed modules. The second is to do with the implementation of

Compute, in particular in its handling of floundering goals.

The current implementation of Compute is extremely efficient and in fact can, for large computa-

tions, execute faster than a comparable set of calls to Resolve that interpret the same computation.

However, Resolve may be specialised as described in Chapter 3 to produce a specialised version

which executes considerably faster, as the results in Table 5.1 show. Compute is a predicate declared

in a closed system module and therefore may not be specialised at all when it is not sufficiently in-

stantiated to be executed. This means that residual calls to Compute in a specialised meta-program

are as expensive as in an unspecialised meta-program. The execution of a computation with such a

residual call to Compute is considerably slower than a comparable set of specialised calls to Resolve

that interpret the same computation. Most meta-programs, particularly relatively large and sophi-

sticated meta-programs such as SAGE, will have many calls with closed system predicates and the

expense of emulating such calls with Compute will be seriously detrimental to the potential speedup

of specialised versions of these meta-programs.

The second problem with Compute is in its handling of floundering goals, particularly goals

containing constraints. Gödel has constraint-solving capabilities in the domains of integers and

rationals and the interpretation of such constraints must be handled by Compute.

Consider for example the specialisation of Resolve. As described in Section 3.3, the renaming

of variables is performed in Resolve by incrementing an integer value which records the maximum

variable index in the current computation. When we specialise Resolve this value is unknown and

renaming a variable will leave the residual term Var("v",n+1), where n is the current maximum
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variable index. Due to the manner in which Compute is currently implemented, when a goal which

contains such a constrained term is executed by a call to Compute there are a number of undesirable

side-effects. These side-effects will cause the substitution returned by Compute to add a superfluous

variable binding and also add a superfluous binding of some new variable to a duplicate of the

constrained term.

These side-effects do not affect the correctness of Compute, but in a large computation where

many such constrained terms appear (such as in the self-application of SAGE) they will have two

undesirable effects. The first is that subsequent calls to Compute will become more and more

expensive as they need to handle more and more superfluous constrained terms. The second is

that these terms can appear as superfluous constraints in the residual programs constructed from

such partial evaluations. These residual programs, such as the results of the second and third

Futamura projections presented below, will noticeably suffer from the expense of computing these

many superfluous constraints. A yet more sophisticated implementation of Compute is needed to

remedy this problem and this is currently under investigation.

5.1.3 The Second and Third Futamura Projections

In this section we present our preliminary results of the self-application of the partial evaluator

SAGEC . First we present an overview of SAGEC and its comparison to SAGE.

Reducing SAGE to SAGEC

In the previous section we described how, as Gödel does not yet support the full commit, SAGEC

removes the commits from specialised code. Next we describe the remaining two differences between

SAGEC and SAGE. These are that SAGEC implements a simplified version of SAGE’s static

analysis and that SAGEC does not specialise conditional formulas to their fullest possible extent.

The static analysis performed by SAGE seeks to achieve two main goals. Firstly to detect a

subset of the selectable predicates which are unsafe in the partial evaluation. Secondly, for those

unsafe predicates, to calculate a most specific generalisation of all atoms with this predicate symbol

which occur in the partial evaluation, so that this most specific generalisation may be specialised.

Implementing the principles of the static analysis has proved to be a complex task which it has

proved most difficult to satisfactorily test until relatively recently. The current implementation of

the static analysis performed by SAGE has proved sufficient to deal with the meta-programs of the

previous section. Unfortunately it is only recently that we have been able to apply this analysis to

SAGE itself. We have discovered that the analysis computed for the self-application of SAGE is

incorrect.

By the results of the previous chapter we know that the principles upon which SAGE’s static
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analysis is based are sound and that it is therefore merely the implementation which is currently

flawed. A pragmatic short-term solution to this problem has been for the user to supply the

partial evaluator with the set of unsafe predicates prior to the static analysis being computed. A

reduced analysis then needs only to compute the most specific generalisations of all atoms with

these predicates.

Next we turn to SAGEC ’s approach to the specialisation of conditional formulas.

SAGE specialises conditionals in the manner described in Chapter 2. First the condition is

specialised. If it is possible to safely determine whether the condition has succeeded or failed then

SAGE will proceed to specialise the then-part or else-part respectively, discarding the redundant

part. If the condition is insufficiently instantiated for such a decision to be made then SAGE

specialises the then-part and else-part and uses the results of this specialisation to construct the

specialised version of the conditional.

SAGEC differs from the above method in the latter case, when the condition is insufficiently

instantiated for it to be able to safely determine whether the condition has succeeded or failed. In

this case SAGEC will not specialise the then-part and else-part, but will construct the specialised

conditional using the specialised condition and unspecialised then-part and else-part.

The reason for this simplification is that we were unable to compute the self-application of a ver-

sion of SAGEC which did implement SAGE’s full specialisation of conditionals. The self-application

of this meta-interpreter failed because Gödel failed due to an error in SICStus Prolog [12], in which

it is currently implemented.

The error in SICStus Prolog occurred during garbage-collection and caused a complete ter-

mination of the Gödel environment, including the current partial evaluation. When SAGEC was

implemented without the full specialisation of conditionals then this problem did not appear and

we were able to successfully perform the second and third Futamura projections.

Simplifying the specialisation of conditionals in the above manner had in fact only a slight

impact on the self-application of SAGEC . The majority of conditional formulas in SAGEC which

were affected were of the form IF C THEN x1=t1 &. . . & xn=tn ELSE x1=s1 &. . . & xn=sn and thus

the specialisation of the then-part and else-part would have had little effect anyway.

There was only one conditional formula in the entire code for SAGEC which caused a problem.

The problem was that an atom with a non-recursive predicate appeared in the then-part of this

conditional. When SAGEC was specialised wrt a meta-program I the definition of this predicate

was deleted, as it would have been superfluous had the conditional been fully specialised. We then

edited the residual program SAGEC
I to replace the definition of this predicate producing the correct

compiler SAGEC∗
I . When the third Futamura projection was performed we repeated this edit to

produce the compiler-generator SAGEC∗

SAGEC . When this compiler-generator was used to specialise

an interpreter I to produce the compiler SAGEC
I it was therefore necessary to repeat this edit to
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Runtime

Example Program (I : P ) SAGEC(I, P ) SAGEC
I (P ) Speedup

Model Elimination: T1 856s 263s 3.3

Model Elimination: T2 902s 269s 3.4

SLD: Transpose 402s 113s 3.6

SLD: Fibonacci 424s 118s 3.6

SLD: QuickSort 557s 199s 2.8

Coroutine: BM-Sort 761s 253s 3.0

Coroutine: EightQueens 1186s 447s 2.7

Coroutine: QuickSort 676s 250s 2.7

Figure 5.2: The Second Futamura Projection

produce the correct compiler SAGEC∗
I again.

We present the results of this self-application of SAGEC below.

The Second Futamura Projection

Figure 5.2 illustrates the results of the second Futamura projection, where we have specialised

SAGEC wrt the three meta-programs in Section 5.1.1 to produce three compilers. This table

illustrates the comparison in the time taken to produce compiled code between using the first

Futamura projection and using these compilers. We have produced compiled code from the object

programs and theories used in Table 5.1 and, in the case of the interpreters SLD and Coroutine,

the quick-sort program appearing in Section 1.2. It should be emphasised that the results in

this and the following tables indicate comparable times for the execution of the entire subject

program. That is, unlike the results in Table 5.1 where we considered the timings for the execution

of the interpretation phase of the meta-programs only, the results in this section consider also the

preprocessing and postprocessing phases of the partial evaluator SAGEC .

It is probably more accurate to compare the runtimes of programs for which the time taken

for garbage-collection has been factored out. Table 5.3 repeats the timings from Table 5.2 with

the times for garbage-collection removed. The figures in brackets indicate the number of garbage-

collections that were performed in a computation.

The Third Futamura Projection

Figures 5.4 and 5.5 illustrate the results for the third Futamura projection. The compiler-generator

was originally generated using an earlier version of Compute and took approximately 23 hours to
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Runtime (GC’s)

Example Program (I : P ) SAGEC(I, P ) SAGEC
I (P ) Speedup

Model Elimination: T1 582s (240) 181s (73) 3.2

Model Elimination: T2 623s (244) 184s (74) 3.4

SLD: Transpose 295s (96) 78s (32) 3.8

SLD: Fibonacci 308s (101) 84s (31) 3.7

SLD: QuickSort 397s (136) 140s (55) 2.9

Coroutine: BM-Sort 505s (243) 170s (77) 3.0

Coroutine: EightQueens 800s (312) 330s (107) 2.4

Coroutine: QuickSort 440s (184) 171s (73) 2.6

Figure 5.3: The Second Futamura Projection minus Garbage-Collection

Runtime

Example Program (I) SAGEC(SAGEC , I) SAGEC
SAGEC (I) Speedup

Model Elimination 45.6hrs 11.9hrs 3.8

SLD 45.3hrs 11.8hrs 3.8

Coroutine 45.7hrs 11.9hrs 3.8

SAGEC 27.2hrs

Figure 5.4: The Third Futamura Projection

produce. When Compute was rewritten to remove a bug only those parts of the compiler-generator

that were affected were regenerated. At this time we do not have accurate results for the time taken

to achieve the third Futamura projection with the current implementation of Compute, although

the figures in Tables 5.4 and 5.5 indicate that it will take around 100 hours (including garbage-

collection).

We must emphasise at this point that, barring the as yet undiscovered bug in the implemen-

tation of SAGE’s static analysis, it is only improvements to the implementation of Gödel that are

preventing us from replacing the above tables with tables that show both the self-application of

SAGE rather than SAGEC and also speedups closer to those in Table 5.1. We hope that in the

near future an improved implementation of those parts of the Gödel language described previously,

that are causing the majority of the remaining computational expense, will at a single stroke both

replace the above tables in this manner and also improve the execution times of unspecialised Gödel

programs.
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Runtime (GC’s)

Example Program (I) SAGEC(SAGEC , I) SAGEC
SAGEC (I) Speedup

Model Elimination 25.2hrs (9645) 7.9hrs (4860) 3.2

SLD 25.0hrs (9636) 7.9hrs (4855) 3.2

Coroutine 25.1hrs (9652) 7.9hrs (4861) 3.2

SAGEC 20.2hrs (5498)

Figure 5.5: The Third Futamura Projection minus Garbage-Collection

5.2 Future Work

SAGE was designed as an experiment to prove that an effective self-applicable partial evaluator

could be constructed in a logic programming language which supported meta-programming with

a ground representation. To be effectively self-applicable it was necessary for SAGE to be able to

effectively specialise all of the facilities of the Gödel language which it utilised. In effect, this meant

that SAGE needed to be able to specialise the vast majority of Gödel’s facilities.

That SAGE is self-applicable is beyond question. The results of the previous section provide a

strong argument for the fact that SAGE has the potential to be effectively self-applicable. Without

doubt the results obtained in Section 5.1.1 by specialising some simple meta-programs are excep-

tional and indicate that SAGE’s specialisation of the ground representation effectively removes the

vast majority of the expense of handling substitutions explicitly. The subsequent results of Sec-

tion 5.1.3 fall short of this high standard. Fortunately this is due not to any fundamental flaw in

SAGE, but rather to the fact that there are still outstanding areas in the residual code produced

by SAGE where there is a residual expense waiting to be removed. We have identified the major

areas of potential expense in the residual for the self-application of SAGE as being the need for

the full-commit operator, the expense of delays in Gödel system modules and the expense of the

implicit delays in negated formulas and conditionals.

In this section we identify areas in which SAGE, or any future program transformer or program

specialiser for the Gödel language, may be extended or improved. We also speculate on potential

solutions or changes to the implementation of Gödel which will remove the remaining expense in

the residual code of specialised Gödel programs.

5.2.1 Extending SAGE

SAGE is a partial evaluator based primarily on finite unfolding techniques. Other specialisation

operations such as folding may be introduced, although the theory needs to be well-founded. The
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major improvement that can be made to SAGE without introducing new specialisation techniques

such as unfolding is to enhance the static analysis.

Two possible future extensions to the static analysis are discussed below. Note that these are

both introduced as areas for investigation as opposed to deficiences in the current static analysis.

We then discuss the specialisation of the set-processing facilities provided by Gödel.

Non-ground Terms

At the moment the static analysis performed by SAGE relies upon the checking of ground terms

in atoms with recursive predicates. For the example meta-programs we have specialised to date

this has proved to be sufficient. Nevertheless it would seem that extending this checking to all

non-variable terms could potentially lead to yet greater effectiveness in the identification of a safe

subset of the selectable predicates that is as large as possible.

Determinancy Analysis

In SAGE it is only the unsafe atoms which are not unfolded when partially evaluating. We have

discussed in Section 3.4 how this restriction aids the avoidance of code explosion. Another potential

cause for code explosion is the unrestricted unfolding of atoms which are non-deterministic. The

static analysis could be extended to detect an unacceptable level of non-determinancy and flag such

atoms as unsafe also. This would have the effect of preventing the unfolding of such atoms while

allowing the definition of the matching predicate to be specialised independently. However, given

that the ground representation is an abstract data-type, it is quite possible for the unfolding of an

atom to produce a large number of resolvents, all bar one of which may cause the branch to fail at

a later date. For example if we were to unfold the atom VarsInTerm1(T ,v,v1), where T is some

ground term, with respect to the definition:

VarsInTerm1(term,vars,[term|vars]) <-

Variable(term) |.

VarsInTerm1(term,vars,vars) <-

ConstantTerm(term,name) |.

VarsInTerm1(term,vars,vars1) <-

FunctionTerm(term,name,args) |

VarsInTerm2(args,vars,vars1).

we would produce three new resultants. However, as T is a ground term we may predict that

at least two of these resultants will belong to a failing branch in this partial evaluation and will

thus be removed later. With the ground representation as an abstract data type non-determinancy

therefore becomes a much less simple matter to predict or detect.
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Intensional Sets

SAGE can specialise all of the facilities of the Gödel language other than finite sets, provided as

a Gödel data structure by the system module Sets. Gödel supports the representation of finite

sets both as extensional set terms and as intensional set terms. The operations on extensional

sets are provided by the closed module Sets and thus may be specialised as for other closed code.

Intensional set terms are not specialised by SAGE, for the reasons described below, but we believe

that the techniques used by SAGE to specialise negated formulas and conditionals may be extended

in a straightforward manner to cover intensional set terms.

There is a complication caused by the use of intensional set terms. A program which imports

the system module Sets may have intensional set terms which appear as arguments, or subterms

of arguments, of atoms in the language of this program. This may cause a problem for meta-

programming by virtue of the fact that formulas may now appear as subterms of terms in the

representation of an object program.

For example, an intensional set term is of the form {T : W}, where T is a term and W is a

formula. Intensional set terms may appear in statements in a program or in goals such as

<- x = {p : Likes(p, Tennis)}.

Here the formula Likes(p,Tennis) appears as a subterm of one of the arguments for the equality

atom in the goal.

As formulas may now appear as subterms of arguments of other formulas, any meta-program

which performed some form of processing of formulas in the language of an object program would

potentially need to examine every subterm of every argument of any atom, rather than just exami-

ning atoms alone.

For example, the postprocessing optimisations performed by SAGE will remove superfluous

terms in some atoms by replacing such atoms with equivalent new atoms. When the partial

evaluation produced by SAGE is large we will need to examine a large number of atoms in the

residual code to determine whether they may be replaced. When the object program makes use

of intensional set terms we must now examine every subterm of every argument for each atom in

the residual code to determine which atoms should be replaced. This will be significantly more

expensive.

A solution has been suggested to the above problem. If Gödel were to implement the represen-

tation of intensional set terms in such a way that they only appeared as arguments of an equality

atom, as in the above example, then it would be much less expensive to detect such terms. Once this

facility is implemented a meta-program such as SAGE could make use of it to handle intensional

set terms in a reasonably efficient manner.
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5.2.2 Delays In Gödel

The expense of delays in residual scripts has already been highlighted. This is the major remaining

expense in specialised Gödel programs and therefore merits further research. The possibility of an

analysis based upon variable-dependencies or similar has already been discussed and it should be

noted here that the benefits of such an analysis apply also to unspecialised Gödel programs, if not

necessarily to the same extent.

5.2.3 The Full Commit

In Section 2.3 we described how SAGE uses the full commit to avoid the enforcement of the

regularity condition when performing a partial evaluation. As was stated then, enforcing regularity

is potentially both expensive and detrimental to the efficiency of the results of a partial evaluation.

Unfortunately the current implementation of Gödel does not support the full commit and therefore

the techniques described in Section 2.3 may not be used to their full effect. In addition, it is a

simple matter to construct an example where the full commit becomes necessary to support even

a single unfolding step in a partial evaluation.

It is possible that we may be able to retain some of the power of the commits in the original

program through the judicious assemblage of a residual script. Consider the case where Gödel

allows programs to use either the bar or one solution commit operators only, as in the current

implementation. Assuming that a programmer uses only ‘clean’ commits for the sake of efficiency

it is possible that we will see one of two cases in general. The first is that when a bar commit

is used in the definition of some predicate then atoms with this predicate are only unfolded when

they are sufficiently instantiated to allow the necessary pruning. In this case the commits are

unnecessary in the residual script, as in the example in Section 5.1.2. If the atom is not sufficiently

instantiated then it is hoped that this atom would not be unfolded into some other residual and

therefore the profusion of full commits would not be allowed to occur. In general, we may not make

these assumptions and it is certainly far from clear if we can avoid problems in this manner with

the one solution commit. Consequently if we are prevented from making use of the full commit it

is most important that this issue bear closer inspection to determine whether there is a reasonable

class of programs for which we may retain bar and single solution commits only in the residual

code.

5.2.4 Opening the System Modules

The majority of Gödel system modules are currently implemented as closed modules. In fact at

present all system modules other than Syntax are closed modules. The justification for making the

system modules closed is that it hides the details of the implementation of these modules from the
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user.

In actuality there are only a small number of the system modules for which there is a strong

argument that their current implementation should be hidden and there are even fewer for which

all of their implementation needs to be hidden. Certain modules, Syntax included, have a part of

their code which it would be advisable to hide and a part that could easily be made open.

It is be possible that the majority of system modules could be split into an open module which

imported a smaller (possibly so small as to be unnecessary) closed module which contained the

hidden part. This has been performed for the current implementation of Syntax which imports

the module Substs that supports the implementation of term and type substitutions described in

Appendix A.2.

Ideally all Gödel system modules should be made open. In this case any partial evaluator would

be able to access the code for a far more substantial portion of Gödel programs than is currently

possible. While a partial evaluator would not in all cases benefit from being able to specialise

Gödel system code to a greater extent than at present, it is certain that this is an issue that should

ideally be left as a choice to the designer of a program transformer for Gödel, rather than the Gödel

system.

The effect of opening a more substantial portion of the code in the system modules would be

to allow this code to be specialised by specialising the relevant calls to Resolve or ResolveAll.

Closed code cannot be specialised in this way and must be interpreted by a call to Compute or

ComputeAll. The current implementations of Compute and ComputeAll are both sophisticated and

efficient. However, we assert that far greater efficiency could be obtained for a specialised Gödel

program if these calls were replaced by calls to Resolve or ResolveAll and specialised in the

manner described in Chapter 3.

5.3 Related Work

In this section we give a brief discussion of work related to SAGE’s partial evaluation techniques

and self-application.

5.3.1 Partial Evaluation Techniques

SAGE is a partial evaluator based mainly on finite unfolding. Partial evaluation was first introduced

into logic programming by Komorowski in [39] and partial evaluation by unfolding was put on a

firm theoretical footing by Lloyd and Shepherdson in [47]. The other optimisations performed by

SAGE use constructive negation and a post-processing reduction of terms. Constructive negation

was first proposed by Chan and Wallace in [13]. The removal of redundant terms has been suggested

several times, the most general presentation being by Gallagher and Bruynooghe in [22].
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We have not attempted to introduce folding rules [37, 60, 63, 69] into SAGE, however recent

results by Seki in [61] on the theory of folding could be used as a basis for a future extension of

SAGE, as could techniques such as predicate polyvariance [11].

5.3.2 Automatic and Sound Finite Unfolding

SAGE is an automatic partial evaluator based upon finite unfolding in that, unlike many previous

partial evaluators, SAGE does not rely upon annotations provided by the user to determine when

to unfold. To our knowledge the first algorithm for automatic partial evaluation based upon finite

unfolding which uses the results of [29] to prove its correctness is that given by Benkerimi in [3].

Benkerimi’s unfolding strategy was shown by Bruynooghe et al in [10] to be insufficient to guarantee

the termination of the partial evaluation. In that paper Bruynooghe et al present a dynamic

strategy for selecting literals for unfolding based upon well-founded measures. This strategy has

been incorporated into an algorithm for automatic partial evaluation by Martens et al in [49].

Experiments with a partial evaluator based on this algorithm were performed by Horváth in [31].

The partial evaluation algorithm for SAGE given in Figure 4.9 shares many similarities with

those of [3, 49]. All three describe automatic strategies based upon finite unfolding for which

correctness of the results is proved with respect to [29]. Proof of termination is given for the

algorithms of both SAGE and [49]. All three algorithms guarantee the coveredness condition by

ensuring that partial evaluation of the msg’s of selectable atoms appearing in the leaf nodes of the

SLDNF-trees (SLD-trees in the case of [49]) used to construct the partial evaluation are computed.

The algorithms of [3, 49] achieve this by examining the leaf-nodes of these SLDNF-trees (or SLD-

trees) and extracting selectable atoms. The msg’s of these atoms and any atoms already partially

evaluated which share the same predicate symbol are then computed. The partial evaluation of

these msg’s is then computed (unless it has already been computed). There is a drawback with

this technique which is that several partial evaluations of successively more general atoms may be

computed before the most general atom is reached.

SAGE differs from the algorithms of [3, 49] in its approach to identifying the msg’s of selec-

table atoms which can appear in the leaf nodes of the SLDNF-trees used in computing a partial

evaluation. The static analysis performed by SAGE prior to partial evaluation computes the set of

unsafe selectable predicates and the msg’s of all occurrences of atoms with these predicate symbols.

As all safe selectable predicates are unfolded by SAGE we may guarantee that only atoms with

non-selectable or unsafe selectable predicates will appear in the leaf nodes of the SLDNF-trees con-

structed by the subsequent partial evaluation. As the static analysis identifies msg’s for the unsafe

predicates, these are partially evaluated once only. The major advantage of this technique over

those of [3, 49] is that the static analysis computes abstract partial evaluations. The computation

of these abstract partial evaluations is significantly less expensive than the repeated computations
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of successively more general partial evaluations as in [3, 49].

SAGE also differs from the algorithms of [3, 49] in the selection strategy it employs for selecting

literals for unfolding. Both Benkerimi and Martens et al use a dynamic analysis of a resultant and

its ancestors in order to select a literal for unfolding. In Chapter 4 we discussed the advantages

for self-applicability of using a static strategy in preference to a dynamic strategy. SAGE uses the

results of the static analysis to guide unfolding and the selection process is simplified to the extent

that selection is merely a matter of selecting the leftmost safe, selectable literal.

5.3.3 Termination Analysis

The static analysis performed by SAGE identifies safe predicates for which atoms with these predi-

cates are guaranteed not to cause non-termination by repeated unfolding. This analysis is similar

to an abstract interpretation of the program and query to be partially evaluated. Abstract interpre-

tation was originally proposed by Cousot and Cousot in [14]. Several frameworks for the abstract

interpretation of logic programming languages have been proposed [8, 25, 36, 50, 65]. However, the

static analysis cannot be described precisely in terms of such a framework and therefore we have

given a self-contained description of it in Chapter 4.

Although we do not present SAGE’s static analysis in terms of a more general framework such

as the above we make the comment that it shares similarities with other applications of abstract

interpretation, particularly for mode, termination and flow-analysis of logic programs [17, 44, 48,

53, 73, 75]. Of these the most closely related is the work of Verschaetse et al [73, 75] who provide

a framework for termination analysis based on level-mappings and specify sufficient conditions for

termination. The outline of a system for automatic termination analysis is presented and the

static analysis performed by SAGE can conceivably be described as being the application of similar

techniques to a specific case (that is, ground meta-programs). Other techniques for automatic

termination analysis have been presented by Plümer [57] and Ullman and Van Gelder [70].

5.3.4 Specialising Meta-Interpreters

The relationship between compilation and the partial evaluation of meta-interpreters was first pro-

posed by Futamura in [20]. The potential applications of the partial evaluation of meta-interpreters

are numerous in logic programming, for example in [9, 42, 55, 58, 66, 68, 71]. However, while par-

tial evaluation is capable of removing the majority of the overheads associated with the ground

representation, to date attention has focused mainly on the elimination of overheads in non-ground

Prolog meta-programs.

While standard partial evaluation techniques such as unfolding can be applied directly to Gödel

meta-programs which use a ground representation, this is not so simple for Prolog meta-programs
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which use the non-ground representation. The partial evaluation of Prolog programs is complicated

by the need to specialise the non-logical features of Prolog. This problem is most acute for non-

ground Prolog meta-programs as Prolog’s non-logical meta-programming features are generally the

most difficult to specialise, particularly the assert and retract predicates. Gallagher [21] and

Owen [56] both suggest techniques for specialising Prolog meta-predicates but we do not consider

this work relevant to the specialisation of meta-programs which use a ground representation.

In Section 3.8 we laid the foundations of a methodology for meta-programming in which it is

intended that the division between those parts of a meta-program which should be unfolded during

partial evaluation and those which should be residual is relatively simple to deduce. The division

of the code in a meta-program in this way is a significant issue in the specialisation of interpreters

in any representation. Lakhotia and Sterling have also highlighted the division of meta-programs

into two parts in [43], where they refer to these as parsing and execution phases. We have used our

knowledge of the general structure of Gödel meta-programs, presented in Section 3.8, to simplify

the partial evaluation strategy employed by SAGE. A similar technique was used by Levi and Sardu

in [45] to simplify the implementation of their partial evaluator.

The key difference between the specialisation of ground and non-ground meta-programs lies in

the need to specialise the explicit unification operations performed by ground meta-programs. The

major motivation for SAGE as a partial evaluator for meta-programs was that it should be an

effective self-applicable partial evaluator for the full Gödel language. In the following two sections

we discuss related work in these areas.

5.3.5 Specialising Resolution

We have developed an implementation of the Gödel system predicate Resolve which is both efficient

and may be specialised to produce residual code that is analogous to WAM-code.

The specialisation of an explicit unification operation was first investigated by Kursawe in [41],

where the non-logical Prolog meta-predicates were used to force explicit unification of object-level

terms. The specialisation of this unification algorithm to produce code comparable to WAM-

code was presented as an illustration of a more general methodology for the development of a

Prolog compiler by the specialisation of a meta-program. A similar approach has been taken by

Nilsson in [54] where such a methodology is illustrated by the design of a resolution algorithm for

propositional logic which can be specialised to produce residual code comparable to the WAM-

instructions for the forward execution and backtracking of procedure calls.

An approach more closely related to ours was taken by de Waal and Gallagher [16] where

a unification algorithm developed specifically for ground meta-programming is specialised with

respect to partially known object-level terms.
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5.3.6 Full Specialisation and Self-Application

SAGE is an automatic, effectively self-applicable partial evaluator for the full Gödel language. That

is, SAGE is a partial evaluator which operates without user guidance for unfolding, can specialise

all facilities of the Gödel language and can produce significantly faster residual code upon self-

application. We note however, that while techniques for the partial evaluation of all facilities of

Gödel have been developed and implemented, as yet not all of these techniques are fully supported

by the current implementation of Gödel.

Attempts to build a self-applicable partial evaluator in Prolog are hampered by the non-logical

features of that language and therefore generally only considered restricted subsets of the language.

The difficulties in specialising the full Prolog language can be seen in [56] where Owen deduces no

less than 18 rules (specialisation techniques) necessary to effectively specialise non-ground Prolog

meta-interpreters. It can be seen that all but two of these rules concern the specialisation of

the non-logical features of Prolog. The remaining two rules correspond to the computation of a

mode-analysis and the partial evaluation of the msg’s of atoms which appear in the residual code

(comparable operations are performed by SAGE’s static analysis).

Techniques for specialising the cut and other non-logical Prolog features were first suggested

by Venken [72] and Sahlin’s Mixtus partial evaluator [59] implements sophisticated techniques to

specialise full Prolog, although no attempt is made to specialise assert. However, Mixtus appears

unsuitable for self-application due to the (often largely dynamic) complexity necessary to specialise

the non-logical features of Prolog and the fact that Mixtus makes substantial use of assert.

The first effective self-applicable partial evaluator is the Mix system of Jones et al [35]. Being the

first effectively self-applicable partial evaluator, Mix is of great significance and many of the stra-

tegies employed in the implementation of Mix are reflected in later approaches to self-applicability.

As with SAGE and the self-applicable Prolog partial evaluators described below, Mix performed an

abstract flow-analysis prior to specialisation and used the results to guide the specialisation process,

although user-annotations were also required. Jones et al identified the importance of the choice

of language in which a self-applicable partial evaluator should be implemented, stressing that it

should be both sufficiently expressive to implement a non-trivial partial evaluator and simple to

process. Mix was implemented in a pure LISP-like language with few operators and the advantage

of using such a pure language is illustrated by the significant speedups gained after self-application.

The Prolog Mix partial evaluator of Fuller and Abramsky [19] similarly performed a static

analysis of the program to be specialised. The importance to self-applicability of performing static

analysis in preference to dynamic analysis was recognised, as was the importance of termination

and correctness. Due to the difficulties of handling the non-logical features of Prolog, Prolog Mix

considered only a restricted subset of the language. Prolog Mix is not fully automated as user-



CHAPTER 5. RESULTS AND CONCLUSIONS 156

annotations were required to guide the unfoldings and termination of the partial evaluation is not

guaranteed. No comparison of timings for the results of the self-application of Prolog Mix were

given in [19].

A comparable system has been developed by Fujita and Furukawa [18]. This system does not

handle the non-logical features of Prolog and is not automated, relying upon user-annotations to

guide unfolding. Speedups of up to two times are quoted for self-application, although no correctness

or termination proofs are provided.

The most recent self-applicable partial evaluator, and the most similar to SAGE, is the Logimix

system of Mogenson and Bondorf [34, 51]. Like SAGE, Logimix is based upon finite unfolding and

uses an analysis to divide the program code into static and dynamic parts for specialisation. Logimix

considers a subset of the Prolog language and relies upon user-annotations to guide unfolding.

Although Logimix uses a ground representation to represent object programs, resolution is

implemented by reflection to the object level. This means that Logimix executes significantly faster

than SAGE. However, resolution in Logimix cannot be specialised in the manner of resolution in

Gödel meta-programs. The results quoted in [51] are impressive for the first Futamura projection,

giving speedups of the order of 15 times. However the speedups after self-application are more

modest, being only 1.78 times faster following the second Futamura projection and 1.35 following

the third.

No proof of either the correctness or termination of Logimix is given and the current implemen-

tation of Logimix relies upon “side-effects” to record certain information during a partial evaluation.

While the use of certain of Prolog’s “side-effecting” predicates can be declarative this, as with Logi-

mix’s unification by reflection to the object-level, is subject to certain restrictions and thus cannot

be assumed to be declarative without proof. SAGE differs from Logimix and the other partial

evaluators above, being the only partial evaluator which is fully automatic, can specialise the full

language in which it is implemented, is proved to be correct and terminating and is effectively self-

applicable, in that the results after self-application show a significant improvement in execution

time.

5.4 Contributions

In this final section we summarise the main contributions of this thesis.

5.4.1 Specialising Gödel Programs

In this thesis we have presented basic techniques for the specialisation of the facilities of the Gödel

language. We have implemented the specialisation of negated formulas by constructive negation [13]

and extended this to cover conditional formulas. The specialisation of Gödel programs has led to the
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development of the concept of a script based on a Gödel program. Scripts are a necessary addition

to the Gödel language for the purposes of program specialisation and transformation. Finally, we

have examined the specialisation of Gödel’s pruning operator, the commit, and extended the results

of [29] by removing the regularity condition from Theorem 3.2 of that paper. These techniques

have all been implemented in SAGE and may also be exploited by any future program specialiser

or program transformer.

5.4.2 Implementing the Ground Representation

In seeking to specialise Gödel meta-programs we have developed an implementation for resolution

in the ground representation which we argue is highly efficient. In addition, this implementation of

resolution (via the Gödel predicates Resolve and ResolveAll) may be specialised with a simple

unfolding strategy to produce residual code which can potentially execute in a time comparable to

a similar resolution step performed at the object level.

The implementation of Resolve and ResolveAll is such that even after specialisation the

implementation of the representation of substitutions is treated as an abstract data type. The

advantages of this approach are that even specialised Gödel meta-programs are independent of any

particular implementation of the representation of substitutions. We have also sought an efficient

implementation of substitutions. The details of this implementation are presented in Appendix A.

We argue that this implementation of substitutions and the operations upon them is one of the

major contributions of this thesis. The ground representation is receiving increasing recognition

as being essential for serious applications of declarative meta-programming and yet the expense it

incurs has long been considered an unacceptable hindrance to its use. With the above results we

have demonstrated that a practical implementation of the ground representation has been achieved

in which the expense of using a ground representation may be largely eliminated by a relatively

simple program specialisation.

5.4.3 A Methodology of Meta-Programming

In [7] three main historical criticisms of using a ground representation for meta-programming were

identified. These were that:

• the representation of object programs as terms is too complex;

• meta-programming in the ground representation is laborious, because large procedures are

required to do simple things such as unifying object-level terms;

• object-level variables and their bindings must be handled explicitly, an overhead that makes

the meta-program unacceptably slow.
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The first of the criticisms is successfully answered in [7], where it was argued that presenting the

ground representation as an abstract data type avoided the need for the user to have knowledge

of its implementation. The third criticism has been successfully countered by the results of the

previous section, where the expense of the ground representation has been largely removed by

SAGE.

The Gödel meta-programming system modules Syntax, Programs, Theories and Scripts pro-

vide substantial support for meta-programming by providing predicates that support most if not

all of the basic meta-programming operations and a range of the more sophisticated ones. We

expect that greater familiarity with Gödel’s meta-programming facilities and further application of

them to serious meta-programming examples will serve to demonstrate that the second criticism is

not valid for the Gödel language. SAGE is one such serious meta-programming application, being

a self-applicable partial evaluator for full Gödel that has been successfully implemented in Gödel.

The meta-programming framework presented in section 3.4 is sufficiently general to describe a sub-

stantial range of ground meta-programs and it is hoped that this will form the basis for a future

methodology for meta-programming with the ground representation.

5.4.4 A Framework for Self-Applicability

We have applied the basic framework for meta-programs presented in section 3.4 to program spe-

cialisation, illustrating SAGE in terms of this framework. This framework has been enhanced to

give a framework that is specific to program specialisers, while still being sufficiently general to

cover a substantial range of partial evaluators. Using this framework we have explored the problems

associated with the self-application of a partial evaluator and identified two pertinent issues. These

are the advantage of the simplicity of a partial evaluator and the advantage of static computation

versus dynamic computation, particularly with respect to the selection strategy for a partial eva-

luator. By emphasising this framework we hope to clarify similar ideas put forward during the

previous work on self-applicability referenced in Section 5.3.

SAGE is an effectively self-applicable partial evaluator which exemplifies the advantages of

concentrating on these two issues. In the first case we were able to make SAGE a relatively simple

partial evaluator largely due to the fact that Gödel is, barring I/O and (sound) pruning, a purely

declarative language and is thus easily specialised. In the second case by basing SAGE’s selection

strategy mainly on a static analysis we were able to implement SAGE in a manner which was

largely amenable to self-specialisation.

We argue that SAGE is a successful demonstration of our solutions to the problems associated

with self-application. These techniques may therefore be used in the future to build potentially

more sophisticated program specialisers than SAGE which would also be effectively self-applicable.

We argue that the implementation of an effectively self-applicable partial evaluator in Gödel,
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combined with the specialisation of Gödel meta-programs described in Chapter 3, form the ma-

jor contribution of this thesis. By implementing SAGE and the techniques necessary to support

it in Gödel and demonstrating its success in achieving the three Futamura projections we have

demonstrated both the power, potential and practicality of meta-programming with the ground

representation and the success of Gödel as a practical, reasonably efficient and (mostly) declarative

language for meta-programming.

5.4.5 Generating a Compiler-Generator

SAGE is an effectively self-applicable partial evaluator that has been implemented in Gödel. Using

SAGE we have automatically produced a compiler-generator by the third Futamura projection.

Producing the compiler-generator serves as perhaps the most significant example in demonstrating

the success of SAGE as a partial evaluator for Gödel meta programs and it is also an extremely

useful meta-program in its own right.

We refer to the compiler-generator SAGESAGE as CoGen. CoGen is a tool that can considerably

reduce the time taken to develop Gödel meta-programs. Consider a Gödel meta-program I. Using

CoGen we are able to produce the compiler SAGEI in a relatively short time. This compiler may be

used to remove the overheads inherent in the ground representation for a range of object programs.

Specialising the meta-program I with respect to an object program P by using the compiler SAGEI

will be significantly faster than specialising it by a call to SAGE(I,P).

The compiler-generator CoGen may also be used in the production of a new compiler-generator.

For example, if SAGE∗ were an enhanced version of SAGE, the compiler-generator CoGen∗ which

specialised SAGE∗ to meta-programs to generate compilers, would be produced be a call to

CoGen(SAGE∗). Of course, CoGen∗ = SAGESAGE∗ and not SAGE∗
SAGE∗ . To produce the

compiler-generator SAGE∗
SAGE∗ would require the third Futamura projection once more.

5.4.6 Conclusions

Finally we reflect on the aims that were presented in the introduction of this thesis. These were to:

1. develop techniques to allow the specialisation of the full Gödel language

2. develop an implementation and a methodology for meta-programming with the ground

representation which was

• efficient

• amenable to specialisation

3. design and implement an effectively self-applicable declarative partial evaluator in Gödel.
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The results of Section 5.1 have, it is hoped, demonstrated that in the development of SAGE

we have succeeded in the first two of these aims and that we have made significant progress in

achieving the third.

The experience of developing and testing SAGE has also convinced the author of the power

Gödel gains by virtue of being a declarative programming language with considerable support

for declarative meta-programming. We claim that this work provides strong support in arguing

that Gödel provides a highly suitable language for the implementation of program transformation,

specialisation and other meta-programming techniques, and also provides a highly suitable language

in which to write the object programs which these meta-programs manipulate. In the near future

we hope to see, in addition to a full version of SAGE and the compilers and compiler-generators

it can produce, the emergence of Gödel meta-programs such as declarative debuggers and program

control generators which will make Gödel an ideal environment for meta-programming.



Appendix A

The Implementation of Substitutions

In this appendix we present the Gödel code that uses the WAM-like predicates to implement

UnifyTerms, UnifyTypes and UnifyAtoms. As has been stated before, the WAM-like predicates

support the representations of substitutions as an abstract data type and are therefore independent

of any particular implementation of substitutions. In Section A.2 we present Gödel’s current im-

plementation of the representation of substitutions. In Section A.3 we present the implementation

of the WAM-like predicates that is supported by the substitutions of Section A.2.

A.1 UnifyTerms, UnifyTypes and UnifyAtoms

The unification of two terms, types or atoms with respect to a substitution is computed in a similar

manner to the unification of an atom with the head of a statement in ResolveAll in section 3.3.2.

The one significant difference is that while with ResolveAll we may be certain that variables in

the statement do not appear in either the atom being resolved or in the current substitution, in

UnifyTerms, UnifyTypes and UnifyAtoms we have no such guarantee. When UnifyTerms is used

to unify two terms with respect to the current substitution the variables in both terms being unified

may potentially appear in the other term and/or in the substitution. In order to deal with this

possibility we firstly apply the current substitution to the first argument. Having done this we

can then guarantee at least that variables in this new term will not be bound to any values in the

substitution.

UnifyTerms(term1, term2, subst, subst1) <-

ApplySubstToTerm(term1, subst, term3) &

UnifyTerms0(term3, term2, subst ,subst1).

UnifyTerms0(Var(n, i), term, subst_so_far, new_subst) <-

GetVariable(term, Var(n, i), subst_so_far, new_subst).

UnifyTerms0(Term(name,args), term, subst_so_far, new_subst) <-

GetFunction(term, Term(name, args1), mode, subst_so_far, subst1) &
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TermOccurCheck(mode, term, args) &

UnifyTermArgs(args, args1, mode, subst1, new_subst).

UnifyTerms0(CTerm(name), term, subst_so_far, new_subst) <-

GetConstant(term, CTerm(name), subst_so_far, new_subst).

TermOccurCheck(Read, term, args) <-

TermNotOccur(args, term).

TermOccurCheck(Write, _, _).

TermNotOccur([], _).

TermNotOccur([arg|rest], var) <-

TermNotOccur1(arg, var) &

TermNotOccur(rest, var).

TermNotOccur1(Var(s,i), var) <-

var ~= Var(s,i).

TermNotOccur1(Term(_,args), var) <-

TermNotOccur(args, var).

TermNotOccur1(CTerm(_), _).

UnifyTermArgs([], [], _, subst, subst).

UnifyTermArgs([arg1|rest1], [arg2|rest2], mode, subst, subst1) <-

UnifyTerms1(arg1, arg2, mode, subst, subst2) &

UnifyTermArgs(rest1, rest2, mode, subst2, subst1).

UnifyTerms1(Var(n, i), term, mode, subst_so_far, new_subst) <-

UnifyKnownVariable(mode, term, Var(n, i), subst_so_far, new_subst).

UnifyTerms1(Term(name,args), term, mode, subst_so_far, new_subst) <-

UnifyFunction(mode, term, Term(name, args1), mode1, subst_so_far, subst1) &

TermOccurCheck(mode1, term, args) &

UnifyTermArgs(args, args1, mode1, subst1, new_subst).

UnifyTerms1(CTerm(name), term, mode, subst_so_far, new_subst) <-

UnifyConstant(mode, term, CTerm(name), subst_so_far, new_subst).

The definition of UnifyTypes is virtually identical to that for UnifyTerms, and so we do not

need to present the code for it here. Having defined UnifyTerms the code for UnifyAtoms requires

little extra.

UnifyAtoms(PAtom(name), PAtom(name), s, s).

UnifyAtoms(Atom(name, args), Atom(name, args1), subst, new_subst) <-

UnifyingTermSubst(args, args1, subst, new_subst).
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UnifyingTermSubst([], [], subst, subst).

UnifyingTermSubst([arg1|rest1], [arg2|rest2], subst, subst1) <-

UnifyTerms(arg1, arg2, subst, subst2) &

UnifyingTermSubst(rest1, rest2, subst2, subst1).

A.2 Representing Substitutions

Substitutions are generally used as a method of recording the variable bindings produced by a

computation. These bindings are mainly constructed through calls to the unification predicates

presented above and the resolution predicates presented in Chapter 3. These predicates all rely

upon the WAM-like predicates to perform any necessary variable bindings. Gödel also supports the

representation of type substitutions, whose implementation is virtually identical to the following

implementation of term substitutions.

There are two main operations that are performed upon the variable bindings that comprise a

substitution. These are the application of a particular variable binding and the addition of some

new variable binding to a substitution.

A.2.1 Applying Variable Bindings

To apply a variable binding that appears in some substitution we must look up this binding to find

what term the variable is bound to. The operation of looking up (or accessing) a variable binding

can be very expensive without a suitably efficient representation of substitutions.

List-Substitutions

An obvious way of implementing substitutions in Gödel is as a list of variable bindings such as:

[ Var("x",0)! CTerm(A’), Var("y",0)! CTerm(B’), Var("z",0)! CTerm(C’)]

which represents the substitution {x/A,y/B,z/C}. We refer to an implementation of this form

as a list-substitution. Unfortunately the lookup operation for a representation of this form is

unacceptably inefficient when there are more then a handful of variable bindings in a substitution.

When specialising a meta-program with SAGE , substitutions may contain several thousand variable

bindings and therefore a more efficient implementation is required.

Array-Substitutions

As described in Section 3.3, a variable with the name x n (where x is a string and n an integer)

is represented in Gödel by the term Var("x",n). The string "x" is called the root of this variable

and the integer n its index.
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In Section 3.3 we described how new variables, introduced by the predicates Resolve,

StandardiseFormulas, RenameFormulas and so on, are represented as Var("v",n), where n is

an integer greater than the index of any other variable in the current computation. The majority

of variables bound in a substitution are likely to be of this form.

Considering the case where all variables bound in a substitution are of the form Var("v",n), for

some n, we may use an implementation of substitutions which we refer to as an array-substitution.

In an array substitution we have an array A, whose elements, T , are the representations of Gödel

terms such that A(i) = T represents the binding of Var("v",i) to T . We must assume that this

array supports some null value N , where A(i) = N if variable Var("v",i) is not bound in the

substitution.

In common with most logic programming languages, Gödel does not provide any direct support

for arrays. Nevertheless we are able to implement an approximation of an array for which the

access time for an element of an array is logarithmic upon the size of that array. This compares

very favourably with the access time for an element of a list. With a suitable support for arrays

we could potentially improve this to a constant access time.

Gödel Substitutions

In the representation of a substitution the majority of variable bindings will be for variables of the

form Var("v",n), with generally only a few bindings for variables of the form Var(s,n), where s

is some string other than "v". These latter variables will in general be the variables that appeared

in the query being interpreted.

In order to support the bindings of both kinds of variable Gödel represents a substitution as

the binary term TermSubst(array,list), where array is an array-substitution used to record

bindings of variables whose root is "v" and list is a list-substitution used to record bindings of

variables whose root is some string other than "v".

To facilitate the process of determining whether the root of a variable is the string "v" or not,

Gödel provides a second representation of variables as Var(n), where n is an integer. A variable

with root "v" and index n is represented by the term Var(n) and a variable with root s (where

s 6= "v") and index n is represented by the term Var(s,n). Thus in the representation of a

substitution, TermSubst(array,list), array is an array-substitution used to record bindings of

variables represented as Var(n) and list is a list-substitution used to record bindings of variables

represented as Var(s,n), where s 6= "v".
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A.2.2 Adding Variable Bindings

In the definition of most correct unification algorithms, such as that in [46], when a variable

binding v/t is to be added to a substitution θ, then the substitution θ must be composed with the

substitution {v/t}. We take the following definition for composition of substitutions from [46].

Definition Let θ = {u1/s1, . . . , um/sm} and σ = {v1/t1, . . . , vn/tn} be substitutions. Then

the composition θσ of θ and σ is the substitution obtained from the set

{u1/s1σ, . . . , um/smσ, v1/t1, . . . , vn/tn}

by deleting any binding ui/siσ for which ui = siσ and deleting any binding vj/tj for which vj ∈

{u1, . . . , um}.

From this definition we see that to add a binding v/t to a substitution θ = {u1/s1, . . . , um/sm}

we must apply the binding {v/t} to the terms {s1, . . . , sm}. When θ is a large substitution (of the

order of thousands of bindings, for example) then this operation will be extremely expensive. Our

solution to this expense is to reduce it to nothing by simply not performing this operation.

The final operation in adding the binding v/t to θ would be to add v/t only if v is not already

bound in θ. We avoid both the need to test for this case and the need to perform the above

application of the binding v/t to θ, by implementing a substitution as a set of variable bindings

for which composition has not been performed. We refer to such a substitution as an uncomposed

substitution.

In an uncomposed substitution θ we may have a chain of references for some variable, v say.

That is to say, v may be bound to a variable w, which is in turn bound to a variable x, which is in

turn bound to a variable. . . and so on. To handle uncomposed substitutions we must introduce the

concept of dereferencing a variable in an uncomposed substitution.

Definition Let v be a variable, θ an uncomposed substitution. Then t, the dereferenced value

of v in θ, is the unbound variable or non-variable term t such that v/v1, v1/v2, . . . , vn/t are all

variable bindings in θ.

When attempting to add a binding for a variable v to a term t in a substitution θ, we first

dereference v in θ. If the dereferenced value, v′, of v is a variable then, by the above definition, v′

is not bound in θ. Therefore we may add the binding v′/t to θ without needing to test whether v′

is already bound in θ.

By implementing the representation of substitutions as uncomposed substitutions we have avoi-

ded entirely the expense of performing composition. Unfortunately we have introduced an extra

expense into the application of variable bindings as a variable, and all subterms of the term to

which this variable is bound, must now be dereferenced when we apply the relevant binding to

this variable. This is an acceptable trade-off however, as the extra expense introduced by the need
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to dereference variables is minuscule compared to the expense of the composition operation. In

fact it can be seen that representing substitutions as uncomposed substitutions is analogous to the

representation of substitutions implemented by the heap (or global stack) of the WAM [2, 76].

A.2.3 Implementing Substitutions

Before we present the Gödel code that implements the representation of substitutions we give a

brief overview of the implementation of array-substitutions.

The two operations of applying and adding a variable binding in an array-substitution are

implemented by the predicates Contents and AddBinding respectively. These predicates essentially

emulate the retrieval and insertion of elements in an array. A call to Contents(i,a,v) for integer

i and array a returns the value, v, of element a(i). A call to AddBinding(i,v,a,a1) for integer

i and array a returns the array, a1, resulting from adding the value v as element a(i) to the array

in the third argument.

Gödel’s array substitutions use the term N (the null value), to record an unbound variable. R(i),

where i is an integer, records a variable that is bound to the variable Var(i). V(var) records a

variable bound to the variable var, where var is a variable of the form Var(s,i). T(t) records the

binding of a variable to a non-variable term t. With the above information on the implementation

of array-substitutions we may now present the code that implements Gödel’s representation of

substitutions.

The application of a variable binding may by illustrated by the application of a substitution to

a term :

ApplySubstToTerm(term, subst, term1) <-

Dereference(term, subst, term2) &

FullDereference(term2, subst, term1).

ApplySubstToArgs([], _, []).

ApplySubstToArgs([arg|rest], subst, [arg1|rest1]) <-

ApplySubstToTerm(arg, subst, arg1) &

ApplySubstToArgs(rest, subst, rest1).

ApplySubstToTerm calls Dereference to dereference a term in a substitution. When this term is

not a variable, Dereference does nothing. When the term is a variable it is dereferenced to return

the unbound variable or non-variable term which this variable references. The call to Dereference

is followed by a call to FullDereference which recursively dereferences any subterms of the term

returned by the call to Dereference.

Dereference(Var(index), TermSubst(array, list), term) <-

Contents(index, array, v1) &

Dereference1(v1, Var(index), array, list, term).
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Dereference(Var(s, i), TermSubst(array, list), term) <-

IF SOME [term1] Member(Var(s, i)! term1, list)

THEN Dereference(term1, TermSubst(array, list), term)

ELSE term = Var(s, i).

Dereference(Term(name, args), _, Term(name, args)).

Dereference(CTerm(name), _, CTerm(name)).

Dereference1(N, var, _, _, var).

Dereference1(R(index), _, array, list, value) <-

Contents(index, array, v1) &

Dereference1(v1, Var(index), array, list, value).

Dereference1(V(var), _, array, list, term) <-

Dereference(var, TermSubst(array, list), term).

Dereference1(T(term), _, _, _, term).

FullDereference(Var(v, n), _, Var(v, n)).

FullDereference(Var(n), _, Var(n)).

FullDereference(Term(name, args), subst, Term(name, args1)) <-

ApplySubstToArgs(args, subst, args1).

FullDereference(CTerm(term), _, CTerm(term)).

Before a binding is performed by the WAM-like predicates presented in the following section,

the variable to be bound is dereferenced. Consequently the only variables which may be bound in

a substitution are unbound variables. This means that the predicate BindVariable, which binds

an unbound variable in a substitution, needs merely to insert this binding.

BindVariable(Var(n, i), term, TermSubst(a, l), TermSubst(a, [Var(n, i)! term|l])).

BindVariable(Var(i), term, TermSubst(a, l), TermSubst(a1, l)) <-

AddTermBinding(term, i, a, a1).

AddTermBinding(Var(s, i), var, array, new_array) <-

AddBinding(var, V(Var(s, i)), array, new_array).

AddTermBinding(Var(index), var, array, new_array) <-

AddBinding(var, R(index), array, new_array).

AddTermBinding(Term(name, args), var, array, new_array) <-

AddBinding(var, T(Term(name, args)), array, new_array).

AddTermBinding(CTerm(name), var, array, new_array) <-

AddBinding(var, T(CTerm(name)), array, new_array).
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A.2.4 Implementing ComposeTermSubsts

The only remaining operation on substitutions worth noting is composition. This operation is

performed using the predicate ComposeTermSubsts provided by the system module Syntax. There

is a problem with the implementation of this operation in that it is unclear how it may be correctly

implemented due to the inherently uncomposed nature of the above implementation of substitutions.

Before we discuss this problem we present the current implementation of ComposeTermSubsts.

We first present the code for the predicate ComposeTermSubsts1.

ComposeTermSubsts1(TermSubst(a, l), subst, TermSubst(a1, l1)) <-

RationaliseTermList(l, l1, subst) &

RationaliseTermArray(a, subst, a1).

RationaliseTermList([], [], _).

RationaliseTermList([var! term|rest], [var! term1|rest1], subst) <-

ApplySubstToTerm(term, var, subst, term1) &

RationaliseTermList(rest, rest1, subst).

A call to ComposeTermSubsts1(s1,s2,s3) returns the substitution {v1/t1θ, . . . , vn/tnθ}

as argument s3, where s1={v1/t1, . . . , vn/tn} and s2=θ. A special case of this is the call

ComposeTermSubsts1(s,s,s1) which has the effect of instantiating s1 to the idempotent sub-

stitution derived from s. That is, the substitution θ such that θ = θθ and v/t is a binding in θ iff

t is the fully dereferenced binding for v in the substitution s.

We refer to the process of deriving an idempotent substitution from an uncomposed substitution

in the above manner as the rationalisation of a uncomposed substitution. We use this property of

the predicate ComposeTermSubsts1 to define ComposeTermSubsts.

ComposeTermSubsts(subst1, subst2, subst3) <-

ComposeTermSubsts1(subst1, subst1, rational1) &

ComposeTermSubsts1(rational1, subst2, compose1) &

ComposeTermSubsts1(subst2, subst2, rational2) &

ComposeTermSubsts2(rational2, compose1, subst3).

ComposeTermSubsts2(TermSubst(a1, s1), TermSubst(a2, s2), TermSubst(a3, s3)) <-

ComposeArrays(a1, a2, a3) &

ComposeLists(s2, s1, s3).

ComposeLists([], h, h).

ComposeLists([var! term|rest], h, [var! term|h1]) <-

DeleteBindings(h, var, h2) &

ComposeLists(rest, h2, h1).
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DeleteBindings([], _, []).

DeleteBindings([var! term|rest], var1, rest1) <-

IF var = var1

THEN rest1 = rest

ELSE rest1 = [var! term|rest2] &

DeleteBindings(rest, var1, rest2).

Note that in the above code the predicates RationaliseTermArray and ComposeArrays perform

operations on array-substitutions that are analogous to those performed on list-substitutions by

the predicates RationaliseTermList and ComposeLists respectively.

The problem with the above code for ComposeTermSubsts (and the equivalent code for

ComposeTypeSubsts) is due to the fact that substitutions are implemented as uncomposed substi-

tutions.

For example, let θ = {y/z} and σ = {x/y} be substitutions. By the above definition the

composition, θσ, of these two substitutions is {y/z, x/y}. However, as the current implementation

represents substitutions as uncomposed substitutions, this substitution will appear as if it were the

substitution {y/z, x/z} when any dereferencing is performed.

The simplest way to ensure that the implementation of ComposeTermSubsts is correct is to

insist that substitutions are implemented as composed substitutions. Unfortunately, as we described

above, this is hopelessly inefficient. At the current time no apparent implementation of substitutions

has been suggested which is both at least reasonably efficient and captures the full correctness of

the composition operator. This issue requires further investigation, although the results will have

no impact upon SAGE. SAGE uses ResolveAll to perform unfolding and thus does not depend on

the predicate ComposeTermSubsts.

The use of ComposeTermSubsts can also introduce circular bindings into a substitution by, for

example, composing the two substitutions {x/y, y/z} and {z/x}. When dereferencing a binding

in an uncomposed substitution where a circular binding occurs this may cause the computation to

enter an infinite loop. This problem can be avoided by testing the new bindings added during a

call to ComposeTermSubsts and using some mechanism to highlight circular bindings. We do not

present the details here.

A.3 The WAM-like Predicates

In the previous section we presented the current implementation for the representation of substitu-

tions. We now give the current implementation of the WAM-like predicates, which is based upon

the above implementation of substitutions.

The two predicates GetConstant and GetFunction which, together with UnifyTerms, unify

arguments of the head of a statement with the matching arguments of the atom being resolved are
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implemented as follows.

GetConstant(term, c, bind, bind1) <-

Dereference(term, bind, term1) &

GetConstant1(term1, c, bind, bind1).

GetConstant1(Var(n), c, TermSubst(array, subst), TermSubst(new_array, subst)) <-

AddBinding(n, T(c), array, new_array).

GetConstant1(Var(s, i), c, TermSubst(a, z), TermSubst(a, [Var(s, i)! c|z])).

GetConstant1(CTerm(name), CTerm(name), bind, bind).

GetFunction(term, f, mode, bind, bind1) <-

Dereference(term, bind, term1) &

GetFunction1(term1, f, mode, bind, bind1).

GetFunction1(Var(n), f, Write, TermSubst(a, s), TermSubst(a1, s)) <-

AddBinding(n, T(f), a, a1).

GetFunction1(Var(s, i), f, Write, TermSubst(a, z), TermSubst(a,[Var(s, i)! f|z])).

GetFunction1(Term(f, a), Term(f, a), Read, bind, bind).

The four predicates which perform the unification operations necessary for processing the arguments

of function terms in the head of the statement are implemented as follows.

UnifyVariable(Write, Var(var), var, var+1).

UnifyVariable(Read, _, var, var).

UnifyValue(Write, term, term, bind, bind).

UnifyValue(Read, term, term1, bind, bind1) <-

UnifyTerms(term, term1, bind, bind1).

UnifyConstant(Write, term, term, bind, bind).

UnifyConstant(Read, term, c, bind, bind1) <-

Dereference(term, bind, term1) &

GetConstant1(term1, c, bind, bind1).

UnifyFunction(Write, term, term, Write, bind, bind).

UnifyFunction(Read, term, f, mode, bind, bind1) <-

Dereference(term, bind, term1) &

GetFunction1(term1, f, mode, bind, bind1).

In order to support the implementation of UnifyTerms and UnifyAtoms two further WAM-

like predicates are needed. These are called GetVariable and UnifyKnownVariable and have the

following implementation.
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GetVariable(Var(var), term, TermSubst(h, l), TermSubst(h1, l)) <-

IF term = Var(var)

THEN subst1 = subst

ELSE TermNotOccur1(term, Var(var)) &

AddTermBinding(term, var, h, h1).

GetVariable(Var(s, v), term, TermSubst(h, l), TermSubst(h,[Var(s, v)! term|l])) <-

IF term = Var(s, v)

THEN subst1 = subst

ELSE TermNotOccur1(term, Var(s, v)).

GetVariable(CTerm(name), var, subst, subst1) <-

BindVariable(var, CTerm(name), subst, subst1)

GetVariable(Term(name, args), var, subst, subst1) <-

TermNotOccur(args, var) &

BindVariable(var, Term(name, args), subst, subst1).

UnifyKnownVariable(Write, var, var, subst, subst).

UnifyKnownVariable(Read, term, var, subst, subst1) <-

GetVariable(term, var, subst, subst1).

The implementation of UnifyTypes given in section A.1 is similar to that for UnifyTerms.

It relies upon six further WAM-like predicates for handling the unification operations for types.

These predicates are named GetParameter, GetBase, GetType, UnifyParameter, UnifyBase and

UnifyType. They are directly analogous to the WAM-like predicates for terms GetVariable,

GetConstant, GetFunction, UnifyKnownVariable, UnifyConstant and UnifyFunction respec-

tively. The implementations of these WAM-like predicates for types are similarly analogous to

those for the corresponding WAM-like predicates for terms.
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