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Abstract

Meta-programs form a class of logic programs of major importance. In the past

it has proved very difficult to provide a declarative semantics for meta-programs in

languages such as Prolog. These problems have been identified as largely being caused

by the fact that Prolog fails to handle the necessary representation requirements

adequately. The ground representation is receiving increasing recognition as being

necessary to adequately represent meta-programs. However, the expense it incurs

has largely precluded its use to date.

The logic programming language Gödel is a declarative successor to Prolog. Gödel

provides considerable support for meta-programming, in the form of a ground repre-

sentation. Using this representation, Gödel meta-programs have the advantage of

having a declarative semantics and can be optimised by program specialisation, to

execute in a time comparable to equivalent Prolog meta-programs which use a non-

ground representation.
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1 Introduction.

The Prolog language, and variants of it, are fraught with problems caused by their non-

logical features, and this means that it is not possible to provide a declarative semantics for

most, practical, Prolog programs. This applies most strongly to meta-programs in Prolog,

where Prolog’s declarative problems are compounded by the fact that the non-ground
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representation is used to represent terms, formulas and programs, despite the fact that,

with such a representation, no declarative semantics can be provided for the Prolog features

such as var, nonvar, assert and retract. The use of a ground representation ([2, 8, 7])

is receiving increasing recognition as being essential for declarative meta-programming,

although, until now, the expense that is incurred by the use of such a representation has

largely precluded its use.

The logic programming language Gödel [9] has been developed with the intention that

it be “a declarative successor to Prolog”. Gödel directly addresses the semantic problems

of Prolog, providing declarative replacements for the non-logical features of Prolog (such

as unsafe negation, Prolog’s setof, unification without occur-checking, and inadequate

facilities for meta-programming).

Gödel provides a ground representation for meta-programming which enables users to

write meta-programs that:

• Have a declarative semantics.

• Are clearly readable and straightforward to write.

• Are potentially comparable, in execution time, to Prolog meta-programs which use

the non-ground representation.

Gödel’s ground representation is presented to the user via an abstract data type, thus

avoiding the need for the user to have knowledge of its implementation, and therefore

not confusing the user with a profusion of constant and function symbols. In addition to

this, the development of large meta-programming applications such as interpreters, theo-

rem provers, partial evaluators and debuggers, in Gödel, have influenced the development

of Gödel’s ground representation, so that a natural and clearly readable style of meta-

programming with the ground representation is now emerging. This is exemplified by the

comparison between the ‘naive’ Gödel meta-interpreter in figure 4, where unification and

resolution are handled explicitly in the code, and the more natural meta-interpreter of

figure 3, where resolution is handled implicitly by the Gödel system predicate Resolve,

discussed in more detail in section 4.1. Henceforth we shall refer to meta-programs which

use a ground representation as ‘ground’ meta-programs and meta-programs which use a

non-ground representation as ‘non-ground’ meta-programs.

Using a ground representation means that unification, particularly the binding of varia-

bles (i.e. substitutions), must be handled explicitly by the meta-program. Programmers

are unable to rely upon the underlying system to perform unification for them. This

can cause considerable execution overheads in meta-programs. However, through program
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specialisation the speed of Gödel meta-programs can be optimised so as to remove these

overheads, producing specialised versions of unification that may be comparable in execu-

tion time to the implicit unification of the underlying system. Certain other specialisations,

described below, may also be performed on ground meta-programs. Performing the above

specialisations can therefore produce ground Gödel meta-programs that have the potential

of executing in a time comparable to equivalent non-ground Prolog meta-programs.

The program specialisation technique that we use is partial evaluation1, a specialisation

technique that has been shown to have great potential, particularly in Functional and Logic

Programming. It was first explicitly introduced into Computer Science by Futamura [5]

and into Logic Programming by Komorowski [10]. Partial evaluation was put on a firm

theoretical basis in [14]. While partial evaluation is capable of removing the majority of

the overheads associated with the ground representation, to date attention has focused

mainly on the elimination of overheads in non-ground Prolog meta-programs, in Prolog

interpreters [6, 12, 16, 17, 18], for example, and, more generally, in [11, 13, 19, 20].

The desire to specialise Gödel meta-programs has prompted the development of a decla-

rative partial evaluator, SAGE2, written in Gödel, that is capable of partially evaluating

any program in the Gödel language. Using SAGE we have been able to specialise Gödel

meta-programs, including SAGE itself, to produce residual programs that execute in a

significantly reduced time.

The layout of this paper is as follows. In the following section we describe Gödel’s

meta-programming facilities in more detail. In the third and fourth sections we describe

how the ground representation and ground unification, respectively, may be specialised.

Finally, we present some results and conclusions, and discuss directions of future research.

2 The Ground Representation in Gödel.

The main facilities provided by the Gödel language are types, modules, control (in the form

of control declarations, constraint solving, and a pruning operator), meta-programming

and input/output. This means that Gödel, being a rich and expressive language, has a

complex syntax. As Gödel’s ground representation is intended to be sufficient to represent

Gödel programs, as well as arbitrary theories, it must allow for the construction of terms

of sufficient complexity to describe arbitrary formulas and Gödel’s types, modules, control,

meta-programming and input/output facilities. The current implementation of the ground

1Also referred to, in this context, as partial deduction.
2Self-Applicable Gödel partial Evaluator.
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VarsInTerm(term,vars) <-

VarsInTerm1(term,[],vars).

VarsInTerm1(term,vars,[term|vars]) <-

Variable(term).

VarsInTerm1(term,vars,vars) <-

ConstantTerm(term,name).

VarsInTerm1(term,vars,vars1) <-

FunctionTerm(term,name,args) &

VarsInTerm2(args,vars,vars1).

VarsInTerm2([],vars,vars).

VarsInTerm2([term|rest],vars,vars1) <-

VarsInTerm1(term,vars,vars2) &

VarsInTerm2(rest,vars2,vars1).

Figure 1: Gödel code for VarsInTerm.

representation [3] requires some 75 constants and function symbols to construct the terms

necessary to adequately represent the entire Gödel language. If all of these symbols were

visible in Gödel meta-programs, it would be necessary for the user to be familiar with the

entire representation and competent in the manipulation of all these symbols, before he/she

would be competent in the writing of meta-programs. To avoid confronting the user with

such complexity unnecessarily, in Gödel, the representations of object level expressions and

programs are treated as abstract data types. This also has the added advantage that meta-

programs are independent of any specific implementation of the ground representation.

Example Figure 1 gives the Gödel code for finding the variables in an object level

term. The predicates Variable, ConstantTerm and FunctionTerm are provided by Gödel.

The first argument to such predicates are, respectively, the representations of object level

variables, constants, and terms with a function at the top level.

The ground representation is an extremely powerful tool for meta-programming. Ho-

wever, it has the disadvantage of considerably increasing computation time. For example,

consider an interpreter that computes the answer for some object program and query, using

SLDNF-resolution. In the current implementation of Gödel, such an interpreter will run

at 100-200 times slower than executing the program and query directly.
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There are two major contributory factors to the expense of the ground representation

in Gödel. The first is a direct result of supporting the ground representation as an abstract

data type. The second, and potentially more serious, factor is that, when using the gro-

und representation, the process of unification must be performed explicitly. However, the

expense incurred by both of these factors has been overcome by partially evaluating meta-

programs with respect to particular object programs, using the partial evaluator SAGE,

that is itself written in Gödel. We discuss the above two factors, and their solutions, in

more detail in the following two sections.

3 Specialising the Representation of Gödel.

The major disadvantage to supporting the ground representation as an abstract data type

is that we pay a price for not making visible those constants and function symbols used

by the ground representation. Consider the predicate VarsInTerm1 in figure 1, which

has three statements in its definition. In each statement the first argument (which is the

key argument) in the head of the statement is a variable. As such, no implementation

of Gödel would be capable of differentiating between the three statements at the time of

procedure entry. Thus a choicepoint would need to be created, and the execution time

of the above code is increased by the time taken to create this choicepoint, and also by

any necessary backtracking. The use of choicepoints will also inhibit garbage collection.

As meta-programs using the ground representation often process some very large terms

(for example, the representation of SAGE is a Gödel term of approximately 1MByte in

size), garbage collection is very important. Any impairment to the efficiency of garbage

collection will, potentially, cause a serious increase in the memory-usage of a meta-program.

We need, therefore, to prevent the creation of these superfluous choicepoints.

Ideally we would like to be able to perform some form of indexing upon the first ar-

guments to VarsInTerm1. If the constants and function symbols used in Gödel’s repre-

sentation were accessible to the user, rather than hidden by the abstract data type, we

would be able to use these symbols in the definition of VarsInTerms1 and thus could per-

form first argument indexing upon this predicate. Such indexing would prevent the need

for the creation of choicepoints and all the attendant expense. In our experience, meta-

programs which are written without access to the symbols in the ground representation

currently run up to three times slower than equivalent programs that do have access to

the ground representation. Fortunately, through program specialisation, it is possible for

a meta-program written without access to the symbols in the ground representation, to
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VarsInTerm1(Var(v,n),vars,[Var(v,n)|vars]).

VarsInTerm1(CTerm(name),vars,vars).

VarsInTerm1(Term(name,args),vars,vars1) <-

VarsInTerm2(args,vars,vars1).

Figure 2: Specialised code for VarsInTerm1(term,vars,vars1).

achieve the efficiency of one that has.

In Gödel’s representation, variables are represented by a term Var(v,n), where v is

a string and n an integer (this representation for variables is described in more detail

below); constant terms are represented by a term CTerm(name), where name is a Gödel

term representing the name of this constant; function terms are represented by a term

Term(name,args), where name is the representation of the name of this function term and

args is the list of representations of its arguments.

We may specialise the Gödel code in figure 1, even without further knowledge of the

values of any arguments. The first atom in the body of each statement in the definition

of VarsInTerm1 may be unfolded. The result of this will be to make visible the relevant

function symbols in Gödel’s ground representation. Figure 2 illustrates the specialised code

for VarsInTerm1. As the relevant function symbols representing variables, constant and

function terms now appear in the first argument of the heads of the statements defining

VarsInTerm1, the Gödel system may perform first argument indexing to differentiate bet-

ween the three statements. Consequently, when a call is made to VarsInTerm1, with the

first argument instantiated, no choicepoints are created, and no backtracking is necessary

at any point in the computation. When such specialisations are performed upon an entire

meta-program, the resulting gains in efficiency are considerable.

The SAGE partial evaluator is capable of performing an automatic specialisation of the

code in figure 1. The residual code will leave the definitions of the predicates VarsInTerm

and VarsInTerm2 unchanged, and replace the definition of VarsInTerm1 with the code in

figure 2.
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Solve(program, goal, v, v, subst, subst) <-

EmptyFormula(goal).

Solve(program, goal, v_in, v_out, subst_in, subst_out) <-

And(left, right, goal) &

Solve(program, left, v_in, new_v, subst_in, new_subst) &

Solve(program, right, new_v, v_out, new_subst, subst_out).

Solve(program, goal, v_in, v_out, subst_in, subst_out) <-

Atom(goal) &

StatementMatchAtom(program, module, goal, statement) &

Resolve(goal, statement, v_in, new_v, subst_in, new_subst, new_goal) &

Solve(program, new_goal, new_v, v_out, new_subst, subst_out).

Figure 3: A Simple Gödel Meta-Interpreter

4 Specialising Resolution in the Ground Represen-

tation.

The greatest expense incurred by the use of the ground representation occurs in the ma-

nipulation of substitutions. When any variable binding is made, this must be explicitly

recorded. Thus any unification, and similarly the composition and application of substituti-

ons, must be performed explicitly. This produces significant overheads in the manipulation

of the representations of terms and formulas. In this section we discuss how this expense

may be greatly reduced, potentially leading to a specialised form of unification that is

comparable to the WAM code [1, 21] for the object program. The need to specialise an ex-

plicit unification algorithm for efficiency has also been investigated in [4, 11]. Specialising

meta-interpreters for propositional logic to produce WAM-like code has been investigated

in [15].

In meta-programming the main manipulations of substitutions occur during resolution

or unfolding, where we must unify an atom in some goal with a statement in the object

program. Figure 3 gives the main part of a very simple Gödel meta-interpreter for definite

programs. It is in the third statement of this program that we see the Gödel predicate

Resolve being used to resolve an atom in the current goal with respect to a statement

selected from the object program. The remaining predicates in Figures 3 and 4 are provided

by Gödel, and the following comments are adapted from the definition of Gödel [9]:
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EmptyFormula(

formula). % Representation of the empty formula.

And(

left , % Representation of a formula W.

right , % Representation of a formula V.

and). % Representation of the formula W & V.

IsImpliedBy(

left , % Representation of a formula W.

right , % Representation of a formula V.

isimpliedby). % Representation of the formula W <- V.

StatementMatchAtom(

program , % Representation of a program.

module , % Name of a module in this program.

atom , % Representation of an atom in the language of

% this program.

statement). % Representation of a statement in this module

% whose proposition or predicate in the head is

% the same as the proposition or predicate in this

% atom.

ApplySubstToFormula(

formula , % Representation of a formula.

subst , % Representation of a term substitution.

formula1). % Representation of the formula obtained by

% applying this substitution to this formula.

RenameFormulas(

formulas , % List of representations of formulas.

formulas1 , % List of representations of formulas.

formulas2). % List of representations of the formulas obtained

% by renaming the free variables of the formulas in

% the second argument by a specific, unique term

% substitution such that they become distinct from

% the free variables in the formulas in the first

% argument.
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ComposeTermSubsts(

subst1 , % Representation of a term substitution.

subst2 , % Representation of a term substitution.

subst3). % Representation of the substitution obtained by

% composing these two substitutions (in the order

% that they appear as arguments).

The implementation of Resolve must handle the following operations:

• Renaming the statement to ensure that the variables in the renamed statement are

different from all other variables in the current goal.

• Applying the current answer substitution to the atom to ensure that any variables

bound in the current answer substitution are correctly instantiated.

• Unifying the atom with the head of the renamed statement.

• Composing the mgu of the atom and the head of the statement with the current

answer substitution to return the new answer substitution.

Each of these four operations is potentially very expensive when we are dealing with the

explicit representation of substitutions, therefore it is vital that Resolve be implemented

as efficiently as possible.

By contrast to the use of Resolve, as in the interpreter of Figure 3, consider the so-

mewhat naive (although still declarative) interpreter of Figure 4. The third statement in

the interpreter performs the same task as that of the third statement in the interpreter of

Figure 3. However this naive interpreter is arguably more obtuse than that of Figure 3, as

the manipulation of formulas and substitutions is here being performed explicitly. There

would appear to be two very strong arguments for avoiding this style of meta-programming.

The first is that it is more arduous for a programmer, requiring as it does explicit and so-

phisticated manipulation of formulas and substitutions. The second is not immediately

apparent, but it is that the implementation of the interpreter of Figure 4 would be noti-

ceably less efficient than that of Figure 3. Furthermore, the interpreter of Figure 3 may

be specialised with respect to an object program in order to remove the majority of the

expense of the ground representation, as we shall describe below. With the inherent in-

efficiencies of the interpreter of Figure 4 however, with its repeated explicit manipulation

of the representations of the atom, statement and current substitution, it is far from clear

that any specialisation could specialise the resolution process to the same extent.
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Demo(program, goal, subst, subst) <-

EmptyFormula(goal).

Demo(program, goal, subst_in, subst_out) <-

And(left, right, goal) &

Demo(program, left, v_in, new_v, subst_in, new_subst) &

Demo(program, right, new_v, v_out, new_subst, subst_out).

Demo(program,goal,subst_in,subst_out) <-

Atom(goal) &

StatementMatchAtom(program, module, goal, statement) &

RenameFormulas([goal], [statement], [statement1]) &

IsImpliedBy(head, body, statement1) &

ApplySubstToFormula(goal, subst_in, goal1) &

UnifyAtoms(goal1, head, mgu) &

ComposeTermSubsts(subst_in, mgu, new_subst) &

Demo(program, body, new_subst, subst_out).

Figure 4: A Naive Gödel Meta-Interpreter

4.1 Specialising Resolve

When we specialise a meta-program such as the interpreter in Figure 3 to a known object

program, the statements in the object program will be known. Therefore we may specialise

Resolve with respect to each statement in the object program. Specialising a call to

Resolve with respect to a known statement will remove the vast majority of the expense

of the ground representation. To see how this is achieved we must look more carefully at

the implementation of Resolve.

The atom Resolve(atom,st,v,v1,s,s1,body) is called to perform the resolution of

the atom atom with the statement st. The integers v and v1 are used to rename the

statement with v being the integer value used in renaming before the resolution step

is performed and v1 being the corresponding value after the resolution step has been

performed. The representations of term substitutions s and s1 represent respectively the

answer substitution before and after the resolution step. The last argument, body, is the

representation of the body of the renamed statement.
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P(x,y,z,F(x,u)) <-

Q(x,x1) &

P(x1,y,z,u).

Figure 5: A Gödel Statement

4.1.1 Variable Renaming

In a call to Resolve, all variables in the statements are renamed as they are encounte-

red. This saves us from having to perform more than one pass over the statements during

resolution. Any variable encountered, which could potentially appear in the new goal, is

replaced by a variable with a name that does not occur elsewhere in the current compu-

tation. Variables in a statement fall into one of three categories, depending on where they

are first encountered. These are:

1. The variable appears in an argument position in the head of the statement. This

variable will be bound to the term in the atom’s matching argument position and

thus does not need to be renamed.

2. The variable appears as a subterm of a term in the head of the statement. This

variable may need to be renamed, but this cannot be determined until the matching

term in the atom is known.

3. The variable appears only in the body of the statement. This variable must be

renamed.

For example, in the statement in Figure 5 the variables x, y and z are variables of the

first type, variable u is of the second type and variable x1 is of the third type. Thus

while variable x1 will certainly require renaming and variable u may require renaming, the

remaining variables need not be renamed. To see how renaming is achieved we must look

more closely at how variables are represented in Gödel.

When represented (by the term Var(name,N)), Gödel variables have names of the form

name_N, where name is the root of the name of the variable (a string) and the non-negative

integer N is called the index of the variable. To specialise renaming at all times we record

Max, the highest integer index occurring in a variable in the current computation, and a new

variable will be given the name v_Max1, where Max1 is the increment of Max. In addition,

new names are given only to variables that are guaranteed to occur in the resolvent. In

this way the creation of new variables is kept to a minimum. A call to Resolve takes
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the increment of the current value of Max as its third argument and returns as its fourth

argument the increment of the value of Max after all renaming has been performed. Thus

specialising the renaming of the statement in Figure 5 of this statement would create

the terms Var("v",max+1) and (assuming that the variable u also required renaming)

Var("v",max+2), where max is the current highest variable index.

4.1.2 Applying the Current Substitution

Before we attempt to unify the atom with the head of the statement we must consider

the possibility that certain variables in the atom will have become bound in the current

substitution. Such bindings must be taken into consideration and yet to apply the current

substitution to all the terms in the atom is an unnecessary expense. To reduce this expense

we must consider the terms in the head of the statement, these terms will each be one of:

1. A variable. Unless this is a repeated variable then the unification of this variable

with the matching term in the atom will always succeed. Thus we do not need to

apply the current substitution to the matching term in the atom.

2. A constant. We must apply the current substitution to the matching term in the

atom before attempting to unify it with this constant.

3. A term with a function at the top level. We must test whether the matching term in

the atom is bound in the current substitution to either a variable or to a term with a

matching function at the top level. If the term in the atom is bound to a term with a

matching function at the top level then we will compare this term’s arguments with

the arguments of the term in the statement.

Note that in the third case, even though we must test whether the matching term in

the atom is a term with a function at the top level, we do not necessarily need to apply

the current substitution to the arguments of this term. In the statement in Figure 5 for

example, if the fourth argument of an atom we wished to resolve with this statement were

bound to some term F(T1,T2), we would not need to apply the current substitution to the

term T2 in order to unify it with the matching variable u in the term F(x,u).

4.1.3 Head Unification in Resolve

The third operation to be performed in the resolution of an atom with a statement is

the unification of the atom and the head of the statement. The unification algorithm

employed enforces occur-checking for safeness. Although occur-checking is potentially very
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expensive, this expense may be greatly reduced by enforcing occur-checking for repeated

variables in the head of the statement only.

After renaming, all variables in the statement are guaranteed not to appear elsewhere

in either the current goal or the current substitution. This means that any bindings for

variables in the head of the statement may be applied to the body of the statement and

then discarded. Consequently only that part of the mgu of the atom and the renamed

head of the statement that records the bindings of variables in the atom will need to be

composed with the current substitution in order to produce the new substitution.

For example, when unifying an atom with the statement in Figure 5, the bindings

for the variables x, y and z in the statement are recorded separately from any potential

bindings for variables in the atom. These bindings may then be applied to the body of

the statement, replacing the variables x, y and z by the terms to which they have been

bound. There will only be one potential occur-check during the unification of an atom

with the head of this statement and that will be if the fourth argument of the atom is a

term F(T1,T2). In this case the first argument of this function term will be unified with

the first argument of the atom and an occur-check will be performed for this unification

step alone.

4.1.4 Composition of the Mgu with the Current Substitution

Having performed the unification of an atom with the head of a statement we must in

theory combine the mgu of this unification with the current substitution. In reality it is

more efficient for any bindings made to variables in the atom to be composed with the

current substitution immediately. In order to achieve these compositions we have a set of

predicates, each of which performs one specific unification operation. The predicates which

unify arguments of the head of the statement with the matching arguments of the atom

are as follows:

UnifyTerms(term1,term2,subst,subst1) attempts to unify the atom’s two terms term1

and term2. UnifyTerms is the only one of these specific argument unification ope-

rations which enforces occur-checking and is used to unify repeated variables in the

head of the statement. In this and the two subsequent atoms, subst is the current

substitution and subst1 is this substitution after the relevant unification step.

GetConstant(term,constant,subst,subst1) attempts to unify the atom’s term term

with the constant constant.
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GetFunction(term,function,mode,subst,subst1) attempts to unify the atom’s term

term with a term function with a function at the top level. If term is bound in

the current substitution to a variable then mode is set to Write and function will

subsequently be instantiated to a renamed version of the term to which this variable

is to be bound. If term is bound in the current substitution to a term with a matching

function at the top level then mode is set to Read.

If an argument in the head of the statement is a term with a function at the top level, then

there are two cases in which a call to GetFunction will succeed. In the first case the atom’s

matching argument is a variable and we must construct a renamed version of the term in

the head of the statement and then bind this variable to it. In the second case the atom’s

matching argument is a term with a matching function at the top level and we must unify

the arguments of this term with the corresponding arguments in the statement’s term.

For example, the term F(x,u) appears in the head of a statement in Figure 5. Thus we

make a call to GetFunction which will succeed with mode set to Write if the atom’s fourth

argument is bound to a variable in the current substitution and will succeed with mode set

to Read if the atom’s fourth argument is bound in the current substitution to some term

F(T1,T2).

The following predicates perform the unification operations necessary for processing the

arguments of function terms in the head of the statement, either renaming variables when

in Write mode or unifying these arguments with the arguments of the matching function

term in the atom when in Read mode.

UnifyVariable(mode,term,var,ind,ind1) in Write mode will instantiate var to the

new variable Var("v",ind) and ind1 = ind+1. In Read mode, var is instantiated

to the atom’s term term and ind1 = ind.

UnifyValue(mode,term,term1,subst,subst1) in Write mode will instantiate term1 to

term. In Read mode this call will unify (with occur-checking) the atom’s two terms

term and term1. In this and the two subsequent atoms, subst is the current substi-

tution and subst1 is this substitution after the relevant unification step.

UnifyConstant(mode,term,constant,subst,subst1) in Write mode will instantiate

term to the constant constant. In Read mode this call attempts to unify the atom’s

term term with the constant constant.

UnifyFunction(mode,term,function,mode1,subst,subst1) in Write mode will

instantiate term to the term function and mode1 is set to Write. In Read mode this
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call attempts to unify the atom’s term term with a term function with a function

at the top level. If term is bound in the current substitution to a variable then mode1

is set to Write and function will subsequently be instantiated to a renamed version

of the term to which this variable is to be bound (as for GetFunction). If term is

bound in the current substitution to a term with a matching function at the top level

then mode is set to Read.

Example Figure 6 illustrates the result of specialising Resolve with respect to the

statement in Figure 5. In the second argument in the head of this specialised statement,

the term statement denotes the representation of the statement in Figure 5, which we

have omitted for the sake of brevity. The residual calls in the body of the specialised call

to Resolve unify the atom’s fourth argument with a term with a function named F at

the top level and two arguments. If the atom’s fourth argument is bound to a variable

in subst_in then mode is set to Write by the call to GetFunction, which also binds this

variable, in new_subst, to a new term with this function at the top level. The subsequent

calls to UnifyValue and UnifyVariable will then instantiate the arguments of this new

function term to the atom’s first argument, arg1, and a new variable, var. They will also

set subst_out = new_subst and v1 = v+1. If the atom’s fourth argument is bound in

subst_in to a term with a matching function symbol at the top level then mode is set

to Read and new_subst = subst_in. The call to UnifyValue then unifies, with occur-

checking, the atom’s first argument, arg1, with the first argument, sub1, of this function

term. If successful, this unification will return the new substitution subst_out. The call to

UnifyVariable then instantiates var to the second argument, sub2, of the atom’s function

term and sets v1 = v.

A more complex example of the specialised code for Resolve is given in Figure 7. Here,

by specialising Resolve to the statement P(x,x,A,F(y,F(x,A))) <- Q(y) we may see an

example of a call to each of the seven predicates described above.

The above seven predicates we refer to as the WAM-like predicates, as they are analo-

gous to emulators for the WAM instructions GetValue (in the case of UnifyTerms), Get-

Constant, GetFunction, UnifyValue, UnifyVariable and UnifyConstant, after which they

are named. Note that a subtle difference in the manner in which the WAM implements

the unification of nested function terms and the manner in which Resolve implements it

means that the WAM does not have an equivalent to the UnifyFunction instruction.

Specialising the interpreter in Figure 3 with respect to an object program, we would

replace the code for Resolve by its specialisation. This would consist of, for each statement

in the object program, one statement that performed the resolution of some (unknown)
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Resolve(

Atom(P’, [arg1, arg2, arg3, arg4]),

statement,

v, v1+1 ,

subst_in, subst_out,

Atom(Q’, [arg1, Var("v", v1)]) &’

Atom(P’, [Var("v", v1), arg2, arg3, var])

) <-

GetFunction(arg4, F’([sub1, sub2]), mode, subst_in, new_subst) &

UnifyValue(mode, arg1, sub1, new_subst, subst_out) &

UnifyVariable(mode, sub2, var, v, v1).

Figure 6: Specialised code for Resolve

Statement: P(x, x, A, F(y, F(x, A))) <- Q(y).

Specialised call to Resolve:

Resolve(

Atom(P’, [arg1, arg2, arg3, arg4]),

statement,

v, v1,

subst_in, subst_out,

Atom(Q’, [var])

) <-

UnifyTerms(arg1, arg2, subst_in, s1) &

GetConstant(arg3, A’, s1, s2) &

GetFunction(arg4, F’([sub1, sub2]), mode, s2, s3) &

UnifyVariable(mode, sub1, var, v, v1) &

UnifyFunction(mode, sub2, F’([sub21, sub22]), mode1, s3, s4) &

UnifyValue(mode1, arg1, sub21, s4, s5) &

UnifyConstant(mode1, sub22, A’, s5, subst_out).

Figure 7: More specialised code for Resolve
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atom with the particular object statement. The residual code in these specialised versions

of Resolve would be a conjunction of atoms with WAM-like predicates. These predicates

are analogous to instructions in the WAM and substitutions may be represented in a format

analogous to that of the WAM’s heap (global stack). As such, these operations could be

implemented by Gödel at a very low level, leading to a computation time for the specialised

form of a meta-program, such as that in Figure 3, comparable to that of the object program

itself.

The Gödel code for Resolve, discussed here, is in fact the code that forms the heart of

SAGE’s unfolding process. As such, it was designed with the intention that it should be

both efficient and able to be specialised in order to produce highly optimised residual code.

Thus the above example of specialising Resolve illustrates a part of the self-application

of SAGE. It also highlights our main aim in the definition of Resolve, which was, in a

declarative meta-programming style, to produce an implementation of resolution for the

ground representation that was both efficient and capable of producing yet more efficient

code upon specialisation. From this code has been developed Gödel’s current implemen-

tation of substitutions and unification, so that the code for Resolve can also be utilised

by other meta-programs and specialised by SAGE in order to remove the overheads of the

ground representation, while retaining the power of meta-programming.

5 Results.

Runtime

Example Program Original Specialised Speedup

Model Elimination (1) 22.56s 029.s 77.79

Model Elimination (2) 26.19s 0.35s 74.83

Demo: Transpose(8x8) 2.94s 0.14s 21.00

Demo: Transpose(8x16) 5.80s 0.23s 25.21

Demo: Fib(10) 11.68s 0.13s 89.85

Demo: Fib(15) 118.34s 1.13s 104.73

Demo: Fib(17) 347.85s 2.84s 122.48

Coroutine: BmSort(7) 2.98s 0.14s 21.29

Coroutine: BmSort(13) 14.08s 0.52s 27.08

Coroutine: EightQueens 5.12s 0.21s 24.38

The above table gives the speedups seen in specialised meta-programs, as a factor of the

runtime of the original versus the specialised program. The example meta-programs are
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implemented using our efficient meta-programming techniques, as in the interpreter of fi-

gure 3, and are specialised with respect to particular object programs/theories to produce

specialised ground meta-programs. The example programs are, respectively, a theorem

prover, provided by André de Waal, based on the model elimination method and spe-

cialised with respect to two theories; an SLDNF interpreter specialised with respect to a

program performing matrix transposition and a program to compute Fibonacci numbers;

and a coroutining interpreter specialised with respect to a list sorting program that uses

the ‘British Museum’ sorting algorithm and a program that solves the eight queens pro-

blem. An analysis of these results shows that a factor of approximately 3 times speedup is

obtained by introducing better indexing and that the rest of the speedup is almost entirely

due to specialising calls to Resolve.

With a lower-level implementation of both the WAM-like predicates mentioned above

and the representations of substitutions, these results may be improved yet further, as the

expense of emulating these WAM-like instructions in Gödel is removed. This will lead to

an execution time for specialised versions of Resolve that will be comparable to the WAM

code for the object statements themselves. Such improvements will be most noticeable

in the specialised code for statements such as those in the matrix transposition program.

Thus such an implementation would cause the greatest speedups to the above example of

interpreting the matrix transposition program, bringing the results for this example into

line with those of the other examples.

All of the specialisations described in this paper are performed automatically by SAGE.

This means that users, without knowledge of the specific implementation of Gödel’s ground

representation, may write declarative ground Gödel meta-programs and, without further

intervention on the part of the user, such programs can be specialised to produce equivalent

programs which will potentially execute in a time comparable to similar Prolog non-ground

meta-programs.

6 Conclusions.

The ground representation, provided by Gödel as an abstract data type, leads to clear

and easily readable programs. In addition, Gödel’s ground representation aids the user by

internally handling the majority of any necessary manipulation of substitutions, when using

the Gödel predicates UnifyTerms, UnifyAtoms and Resolve. These predicates deal with

almost all of the unification and composition and application of substitutions necessary

in meta-programming, thus leading to clearer, simpler, meta-programs (e.g. figure 3, as
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opposed to figure 4).

Having written a Gödel meta-program, an automatic specialisation may be performed

by SAGE. Thus, without any further involvement on the part of the user, the overheads

imposed by using an abstract data type may be removed. At the same time, specialising

the meta-program with respect to an object program, a version of the meta-program is

produced that, while still declarative, will execute in a significantly improved time. With

a suitable implementation of Gödel’s representation of substitutions, and the relevant pri-

mitive operations upon them, such a meta-program would execute in a time comparable to

an equivalent Prolog meta-program which utilised Prolog’s (non-declarative) non-ground

representation.

We claim that the above results demonstrate that the ground representation is not

only an essential tool for declarative meta-programming, but also that it is a practical

one, as, through program specialisation, we may remove the expense incurred by its use.

Using the ground representation in this way, many of the potential applications of meta-

programming that have so far proved impossible in Prolog, such as effective self-applicable

partial evaluators, now seem eminently achievable.
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[9] P M Hill and J W Lloyd. The Gödel Programming Language. Technical Report CSTR-

92-27, Department of Computer Science, University of Bristol, 1992. Revised May 1993.

To be published by MIT Press.

[10] H J Komorowski. A specification of an abstract prolog machine and its application to

partial evaluation. Technical Report LSST 69, Linkoping University, 1981.

[11] P Kursawe. How to invent a prolog machine. New Generation Computing, 5:97–114,

1987.

[12] A Lakhotia and L Sterling. How to control unfolding when specialising interpreters.

New Generation Computing, 8:61–70, 1990.

[13] G Levi and G Sardu. Partial evaluation of metaprograms in a “multiple worlds” logic.

New Generation Computing, 6:227–248, 1988.

[14] J W Lloyd and J C Shepherdson. Partial evaluation in logic programming. Journal

of Logic Programming, 11:217–242, 1991.

[15] U Nilsson. Towards a methodology for the design of abstract machines for logic

programming languages. Journal of Logic Programming, 16(1&2):163–189, May 1993.

[16] S Owen. Issues in the partial evaluation of meta-interpreters. In H D Abramson and

M H Rogers, editors, Meta-Programming in Logic Programming, Proceedings of the

Meta88 Workshop, June 1988, pages 319–340. MIT Press, 1989.



REFERENCES 21

[17] S Safra and E Shapiro. Meta interpreters for real. In H J Kugler, editor, Information

Processing 86, pages 271–278. North-Holland, 1986.

[18] L S Sterling and R D Beer. Meta-interpreters for expert system construction. Journal

of Logic Programming, 6:163–178, 1989.

[19] A Takeuchi and K Furukawa. Partial evaluation of Prolog programs and its application

to meta-programming. In H J Kugler, editor, Information Processing 86, pages 415–

420, Dublin, 1986. North Holland.

[20] R Venken. A Prolog meta-interpreter for partial evaluation and its application to

source to source transformation and query optimisation. In ECAI-84: Advances in

Artificial Intelligence, pages 91–100, Pisa, 1984. North-Holland.

[21] D H D Warren. An abstract prolog instruction set. Technical Note 309, SRI Interna-

tional, 1983.


