Toward An Analysis of Quantification by Dennis J. Darland
 February 20, 2016
 (c) 2016 Dennis J. Darland

Assumptions:

- I'm first examining only the propositional attitude of belief - I will examine the others later.
- I will not assume people think logically.
- I will assume (just for simplicity's sake) that objects of propositional attitudes can be expressed $\mathrm{F}(\mathrm{a}, \mathrm{b}, \ldots$). or (x)F(x, b), etc.
- These propositional attitudes will be analyzed into $1^{\text {st }}$ order predicate logic.
- The propositional attitudes themselves need not obey the rules of logic, but their analysis do.
- I am here considering only universal quantification.
- Existential quantification can be defined in terms of universal - except in an empty universe.
- The variables occurring in objects of expressed propositional attitudes are just words like other words.

Examination of a simple case using real numbers.

S believes $(x)(y)(x+y=y+x)$

- Let's assume we understand ' + ' and ' $=$ ' for now $\&$ just focus on quantifiers and variables.
- One might think it asserts that if one substitutes any name or description of a real number for x and y, then $x+y=y+x$ becomes true.
- But that is insufficient. There are some real numbers that cannot be named or described.
- That is good (for our example) as that occurs in other uses of variables also.
- We learn to use variables from cases where there are names, but generalize beyond that.

It looks like it needs to be analyzed as:

- There are symbols X, Y, PLUS, and EQUALS, such that the relation belief_r holds between X, Y, PLUS, EQUALS, and EQUALS(PLUS(X, Y), PLUS(Y, X))
- X has a variable_symbol_r relation to the set of real numbers.
- Y has a variable_symbol_r relation to the set of real numbers.
- PLUS has a symbol_relation to the binary function +
- EQUALS has a symbol_relation to the binary relation =

S would assert EQUALS(PLUS(X, Y), PLUS(Y, X))

I have indicated variables by yellow highlighting. (I'm not very good with LibreOffice, or I would have made the variables themselves a different color. This eliminates the need for the leading quantifiers.

Then if S asserts EQUALS(PLUS(X, Y), PLUS(Y, X))

We have

- There are symbols X, Y, PLUS, and EQUALS, such that the relation belief_r holds between X, Y, PLUS, EQUALS, and EQUALS(PLUS(X, Y), PLUS(Y, X))
- X has a variable_symbol_r relation to the set of real numbers.
- Y has a variable_symbol_r relation to the set of real numbers.
- PLUS has a symbol_relation to the binary function +
- EQUALS has a symbol_relation to the binary relation =
- EQUALS expresses EQUALS for S
- PLUS expresses PLUS for S
- \mathbf{X} expresses X for S
- \mathbf{Y} expresses Y for S

A different color could be used for existential quantification, and all statements can be transformed into prenex form - so this should be sufficient though often not convenient. The "prenex" order could be indicated by the lexicographical order of the variables.

For example S expresses EQUALS(X, 4)
becomes

- There are symbols $\mathrm{X}, 4$, and EQUALS, such that the relation belief_r holds between $\mathrm{X}, 4$, and EQUALS(X, 4)
- X has a existential_variable_symbol_r relation to any member of the set of real numbers.
- FOUR has symbol relation to 4
- EQUALS has a symbol_relation to the binary relation =
- EQUALS expresses EQUALS for S
- 4 expresses FOUR for S
- Xexpresses X for S

